Properties

Label 8-1920e4-1.1-c1e4-0-21
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 6·9-s + 16·13-s + 2·25-s + 4·27-s − 16·37-s − 64·39-s − 4·49-s − 8·75-s − 37·81-s + 24·83-s + 24·107-s + 64·111-s + 96·117-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 16·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 108·169-s + 173-s + ⋯
L(s)  = 1  − 2.30·3-s + 2·9-s + 4.43·13-s + 2/5·25-s + 0.769·27-s − 2.63·37-s − 10.2·39-s − 4/7·49-s − 0.923·75-s − 4.11·81-s + 2.63·83-s + 2.32·107-s + 6.07·111-s + 8.87·117-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.31·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8.30·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.196181844\)
\(L(\frac12)\) \(\approx\) \(1.196181844\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54121728581489532861533817085, −6.10546299602104740359722387681, −6.10088357053194398129776068516, −6.05507641527199802347694699498, −5.80564522148800512674059883441, −5.56260681412147814521675418759, −5.26122637874589779351830328624, −5.11420301377822517693419665067, −5.09859062773033888009641792750, −4.55366764392720175156261290797, −4.53361677181680364980005836111, −4.23281155780174363063426653620, −3.89809857066315880337094612699, −3.61135480089446761797195890840, −3.56546693166687409712975612538, −3.26580603282515368443517706283, −3.02518549762816683954959749108, −2.92644115698893507746360006882, −2.05469728873766058436072817781, −1.98323307759391271691971399777, −1.76928511473997099880095806811, −1.18568880018780409129030275935, −0.975531391699106144688981089592, −0.900650573084941328723160121838, −0.28679037645353120306288843094, 0.28679037645353120306288843094, 0.900650573084941328723160121838, 0.975531391699106144688981089592, 1.18568880018780409129030275935, 1.76928511473997099880095806811, 1.98323307759391271691971399777, 2.05469728873766058436072817781, 2.92644115698893507746360006882, 3.02518549762816683954959749108, 3.26580603282515368443517706283, 3.56546693166687409712975612538, 3.61135480089446761797195890840, 3.89809857066315880337094612699, 4.23281155780174363063426653620, 4.53361677181680364980005836111, 4.55366764392720175156261290797, 5.09859062773033888009641792750, 5.11420301377822517693419665067, 5.26122637874589779351830328624, 5.56260681412147814521675418759, 5.80564522148800512674059883441, 6.05507641527199802347694699498, 6.10088357053194398129776068516, 6.10546299602104740359722387681, 6.54121728581489532861533817085

Graph of the $Z$-function along the critical line