L(s) = 1 | − 3·3-s − 5-s + 4·7-s + 2·9-s − 4·11-s − 8·13-s + 3·15-s + 4·17-s − 14·19-s − 12·21-s − 8·23-s − 4·25-s + 2·27-s + 4·29-s − 5·31-s + 12·33-s − 4·35-s − 4·37-s + 24·39-s − 7·41-s − 19·43-s − 2·45-s − 8·47-s + 10·49-s − 12·51-s + 5·53-s + 4·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 1.51·7-s + 2/3·9-s − 1.20·11-s − 2.21·13-s + 0.774·15-s + 0.970·17-s − 3.21·19-s − 2.61·21-s − 1.66·23-s − 4/5·25-s + 0.384·27-s + 0.742·29-s − 0.898·31-s + 2.08·33-s − 0.676·35-s − 0.657·37-s + 3.84·39-s − 1.09·41-s − 2.89·43-s − 0.298·45-s − 1.16·47-s + 10/7·49-s − 1.68·51-s + 0.686·53-s + 0.539·55-s + ⋯ |
Λ(s)=(=((216⋅74⋅174)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅74⋅174)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅74⋅174
|
Sign: |
1
|
Analytic conductor: |
53428.8 |
Root analytic conductor: |
3.89916 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 216⋅74⋅174, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)4 |
| 17 | C1 | (1−T)4 |
good | 3 | (((C4×C2):C2):C2):C2 | 1+pT+7T2+13T3+28T4+13pT5+7p2T6+p4T7+p4T8 |
| 5 | C2≀C2≀C2 | 1+T+pT2−7T3+4T4−7pT5+p3T6+p3T7+p4T8 |
| 11 | D4 | (1+2T+18T2+2pT3+p2T4)2 |
| 13 | D4 | (1+4T+10T2+4pT3+p2T4)2 |
| 19 | C2≀C2≀C2 | 1+14T+116T2+710T3+3510T4+710pT5+116p2T6+14p3T7+p4T8 |
| 23 | C2≀C2≀C2 | 1+8T+72T2+328T3+1998T4+328pT5+72p2T6+8p3T7+p4T8 |
| 29 | C2≀C2≀C2 | 1−4T+48T2−364T3+1118T4−364pT5+48p2T6−4p3T7+p4T8 |
| 31 | C2≀C2≀C2 | 1+5T+39T2−35T3+96T4−35pT5+39p2T6+5p3T7+p4T8 |
| 37 | C2≀C2≀C2 | 1+4T+80T2+140T3+2878T4+140pT5+80p2T6+4p3T7+p4T8 |
| 41 | C2≀C2≀C2 | 1+7T+99T2+625T3+5720T4+625pT5+99p2T6+7p3T7+p4T8 |
| 43 | C2≀C2≀C2 | 1+19T+237T2+2183T3+16508T4+2183pT5+237p2T6+19p3T7+p4T8 |
| 47 | C2≀C2≀C2 | 1+8T+76T2+616T3+5542T4+616pT5+76p2T6+8p3T7+p4T8 |
| 53 | C2≀C2≀C2 | 1−5T+111T2−575T3+6632T4−575pT5+111p2T6−5p3T7+p4T8 |
| 59 | C2≀C2≀C2 | 1+192T2−80T3+15758T4−80pT5+192p2T6+p4T8 |
| 61 | C2≀C2≀C2 | 1+23T+357T2+3847T3+34148T4+3847pT5+357p2T6+23p3T7+p4T8 |
| 67 | C2≀C2≀C2 | 1+15T+239T2+2555T3+22872T4+2555pT5+239p2T6+15p3T7+p4T8 |
| 71 | C2≀C2≀C2 | 1+2T+152T2+1018T3+10798T4+1018pT5+152p2T6+2p3T7+p4T8 |
| 73 | C2≀C2≀C2 | 1+5T+91T2+155T3+2872T4+155pT5+91p2T6+5p3T7+p4T8 |
| 79 | C2≀C2≀C2 | 1−24T+396T2−4920T3+49830T4−4920pT5+396p2T6−24p3T7+p4T8 |
| 83 | C2≀C2≀C2 | 1+10T+212T2+1890T3+25814T4+1890pT5+212p2T6+10p3T7+p4T8 |
| 89 | C2≀C2≀C2 | 1+16T+136T2+1280T3+16110T4+1280pT5+136p2T6+16p3T7+p4T8 |
| 97 | C2≀C2≀C2 | 1+15T+323T2+2665T3+37944T4+2665pT5+323p2T6+15p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.96533782031094690438592464026, −6.80242226107146098264162871806, −6.42483563759083864951338429728, −6.39995404412102598077196338387, −6.11416615276011873489365712737, −5.80017717445386214894354939702, −5.59807817860182320034012050669, −5.40075801317743351795784418323, −5.32454458171692868630858501985, −5.24990581075479334580043275570, −4.75895901353658390582609894907, −4.70565326152272854436276361643, −4.53558909667300863919179729368, −4.26364930555437060036039625304, −4.13594955239238313071468468496, −3.74180899562977542287645354573, −3.62498850997454474272934263897, −3.00859459784992687899187139590, −2.81570386255833249466026289327, −2.76802031154388122956489060334, −2.33642005094903179380584020249, −1.85430439698695992713526001106, −1.76686775996363392713797392868, −1.70812417877573680181152914734, −1.18682378364365594590547214346, 0, 0, 0, 0,
1.18682378364365594590547214346, 1.70812417877573680181152914734, 1.76686775996363392713797392868, 1.85430439698695992713526001106, 2.33642005094903179380584020249, 2.76802031154388122956489060334, 2.81570386255833249466026289327, 3.00859459784992687899187139590, 3.62498850997454474272934263897, 3.74180899562977542287645354573, 4.13594955239238313071468468496, 4.26364930555437060036039625304, 4.53558909667300863919179729368, 4.70565326152272854436276361643, 4.75895901353658390582609894907, 5.24990581075479334580043275570, 5.32454458171692868630858501985, 5.40075801317743351795784418323, 5.59807817860182320034012050669, 5.80017717445386214894354939702, 6.11416615276011873489365712737, 6.39995404412102598077196338387, 6.42483563759083864951338429728, 6.80242226107146098264162871806, 6.96533782031094690438592464026