Properties

Label 8-1792e4-1.1-c1e4-0-7
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $41923.7$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 4·9-s + 4·25-s + 32·31-s + 34·49-s − 32·63-s − 6·81-s + 16·103-s − 72·113-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 28·169-s + 173-s − 32·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 3.02·7-s + 4/3·9-s + 4/5·25-s + 5.74·31-s + 34/7·49-s − 4.03·63-s − 2/3·81-s + 1.57·103-s − 6.77·113-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.15·169-s + 0.0760·173-s − 2.41·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(41923.7\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.652704028\)
\(L(\frac12)\) \(\approx\) \(2.652704028\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54769846984708265365893326726, −6.38964646932327650238454278167, −6.30156344119126328397286120301, −6.25374729537269986923632495007, −5.96126094892780603151314100302, −5.48951149048810796294566268324, −5.28706318632413139809969280326, −5.16926717120015883289475225174, −4.86283426764271311878706954171, −4.53069516972541974115031320502, −4.33767963487324340621380104902, −4.24323455797769733300531422369, −3.96363554603044448416685189462, −3.62145335985329293199719419578, −3.61045470272336024425967764226, −3.03998442316696008251800990983, −2.89476893826406124826326494463, −2.72134195976213694686958656727, −2.64670560181074111228044535550, −2.44313757805799272978955123939, −1.68364349675022745156352715638, −1.44704178786612253807773499313, −1.07709711449212725480744468424, −0.69235760161598458308861321334, −0.40463398451750074972246008940, 0.40463398451750074972246008940, 0.69235760161598458308861321334, 1.07709711449212725480744468424, 1.44704178786612253807773499313, 1.68364349675022745156352715638, 2.44313757805799272978955123939, 2.64670560181074111228044535550, 2.72134195976213694686958656727, 2.89476893826406124826326494463, 3.03998442316696008251800990983, 3.61045470272336024425967764226, 3.62145335985329293199719419578, 3.96363554603044448416685189462, 4.24323455797769733300531422369, 4.33767963487324340621380104902, 4.53069516972541974115031320502, 4.86283426764271311878706954171, 5.16926717120015883289475225174, 5.28706318632413139809969280326, 5.48951149048810796294566268324, 5.96126094892780603151314100302, 6.25374729537269986923632495007, 6.30156344119126328397286120301, 6.38964646932327650238454278167, 6.54769846984708265365893326726

Graph of the $Z$-function along the critical line