| L(s) = 1 | − 5-s − 3·7-s − 9-s + 11-s + 3·13-s + 2·19-s + 2·23-s + 3·35-s − 2·37-s + 3·41-s + 45-s + 2·47-s + 6·49-s − 2·53-s − 55-s + 2·59-s + 3·63-s − 3·65-s − 3·77-s − 2·89-s − 9·91-s − 2·95-s − 99-s + 2·103-s − 2·115-s − 3·117-s + 127-s + ⋯ |
| L(s) = 1 | − 5-s − 3·7-s − 9-s + 11-s + 3·13-s + 2·19-s + 2·23-s + 3·35-s − 2·37-s + 3·41-s + 45-s + 2·47-s + 6·49-s − 2·53-s − 55-s + 2·59-s + 3·63-s − 3·65-s − 3·77-s − 2·89-s − 9·91-s − 2·95-s − 99-s + 2·103-s − 2·115-s − 3·117-s + 127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8113675986\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8113675986\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
|---|
| bad | 2 | | \( 1 \) |
| 5 | $C_4$ | \( 1 + T + T^{2} + T^{3} + T^{4} \) |
| 11 | $C_4$ | \( 1 - T + T^{2} - T^{3} + T^{4} \) |
| good | 3 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 7 | $C_1$$\times$$C_4$ | \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \) |
| 13 | $C_1$$\times$$C_4$ | \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 17 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 19 | $C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 23 | $C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 29 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 31 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 37 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 41 | $C_1$$\times$$C_4$ | \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 43 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 47 | $C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 53 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 59 | $C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 61 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 67 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 71 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 73 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 79 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 83 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 89 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 97 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| show more | | |
| show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.91422391118346260688275103098, −6.49581508316893380590510897941, −6.28414850965238338225282722669, −6.25547817823566540568812772458, −6.23843428413840603969229575990, −5.64213232100910980207937009470, −5.59196666569741998606513366905, −5.51480734744154331327818140718, −5.36880373684449116142741007375, −4.80058204970272185095811744385, −4.70777305820734083552351770854, −4.19639713228725902351165731021, −3.96936474838488143653031106608, −3.73610422671316602400263277353, −3.60220335600062792448247746966, −3.59643784152287024785961363455, −3.49957008128929798177648782320, −2.88223035855807665919701929482, −2.77919337516118202356259089717, −2.57278663030432951781979691439, −2.54201189203636174113634881132, −1.48941698097385894892291481055, −1.33371165994113460471617461485, −1.04560009404662807490430644014, −0.63229069218013483504699716298,
0.63229069218013483504699716298, 1.04560009404662807490430644014, 1.33371165994113460471617461485, 1.48941698097385894892291481055, 2.54201189203636174113634881132, 2.57278663030432951781979691439, 2.77919337516118202356259089717, 2.88223035855807665919701929482, 3.49957008128929798177648782320, 3.59643784152287024785961363455, 3.60220335600062792448247746966, 3.73610422671316602400263277353, 3.96936474838488143653031106608, 4.19639713228725902351165731021, 4.70777305820734083552351770854, 4.80058204970272185095811744385, 5.36880373684449116142741007375, 5.51480734744154331327818140718, 5.59196666569741998606513366905, 5.64213232100910980207937009470, 6.23843428413840603969229575990, 6.25547817823566540568812772458, 6.28414850965238338225282722669, 6.49581508316893380590510897941, 6.91422391118346260688275103098