L(s) = 1 | − 64·4-s − 4·7-s + 3.83e3·13-s + 3.07e3·16-s + 1.02e4·19-s + 1.84e4·25-s + 256·28-s − 4.00e4·31-s − 2.02e4·37-s + 1.84e5·43-s − 4.70e5·49-s − 2.45e5·52-s + 6.09e5·61-s − 1.31e5·64-s − 2.00e6·67-s + 5.25e5·73-s − 6.55e5·76-s − 8.48e5·79-s − 1.53e4·91-s + 3.62e6·97-s − 1.17e6·100-s + 5.27e6·103-s − 1.24e6·109-s − 1.22e4·112-s + 1.95e6·121-s + 2.56e6·124-s + 127-s + ⋯ |
L(s) = 1 | − 4-s − 0.0116·7-s + 1.74·13-s + 3/4·16-s + 1.49·19-s + 1.17·25-s + 0.0116·28-s − 1.34·31-s − 0.398·37-s + 2.32·43-s − 3.99·49-s − 1.74·52-s + 2.68·61-s − 1/2·64-s − 6.67·67-s + 1.35·73-s − 1.49·76-s − 1.72·79-s − 0.0203·91-s + 3.96·97-s − 1.17·100-s + 4.82·103-s − 0.959·109-s − 0.00874·112-s + 1.10·121-s + 1.34·124-s − 0.0174·133-s + ⋯ |
Λ(s)=(=((24⋅316)s/2ΓC(s)4L(s)Λ(7−s)
Λ(s)=(=((24⋅316)s/2ΓC(s+3)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅316
|
Sign: |
1
|
Analytic conductor: |
1.92921×106 |
Root analytic conductor: |
6.10481 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅316, ( :3,3,3,3), 1)
|
Particular Values
L(27) |
≈ |
4.389141112 |
L(21) |
≈ |
4.389141112 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+p5T2)2 |
| 3 | | 1 |
good | 5 | D4×C2 | 1−736p2T2+181599p4T4−736p14T6+p24T8 |
| 7 | D4 | (1+2T+235272T2+2p6T3+p12T4)2 |
| 11 | D4×C2 | 1−1952680T2+729391264242T4−1952680p12T6+p24T8 |
| 13 | D4 | (1−1918T+7035111T2−1918p6T3+p12T4)2 |
| 17 | D4×C2 | 1−81233464T2+2800570401456999T4−81233464p12T6+p24T8 |
| 19 | D4 | (1−5122T+92571840T2−5122p6T3+p12T4)2 |
| 23 | D4×C2 | 1−306194656T2+48390197876780226T4−306194656p12T6+p24T8 |
| 29 | D4×C2 | 1+218801912T2+713450102444654343T4+218801912p12T6+p24T8 |
| 31 | D4 | (1+20048T+1659858486T2+20048p6T3+p12T4)2 |
| 37 | D4 | (1+10100T+5013752475T2+10100p6T3+p12T4)2 |
| 41 | D4×C2 | 1−2589640888T2+18656732024545255890T4−2589640888p12T6+p24T8 |
| 43 | D4 | (1−92470T+8867120496T2−92470p6T3+p12T4)2 |
| 47 | D4×C2 | 1−27858666964T2+191878190860258806p2T4−27858666964p12T6+p24T8 |
| 53 | D4×C2 | 1−51925621720T2+16⋯94T4−51925621720p12T6+p24T8 |
| 59 | D4×C2 | 1−144480622612T2+86⋯26T4−144480622612p12T6+p24T8 |
| 61 | D4 | (1−304528T+97865805831T2−304528p6T3+p12T4)2 |
| 67 | D4 | (1+1004486T+432404360664T2+1004486p6T3+p12T4)2 |
| 71 | D4×C2 | 1−94765336960T2+38⋯74T4−94765336960p12T6+p24T8 |
| 73 | D4 | (1−262912T+52515591p2T2−262912p6T3+p12T4)2 |
| 79 | D4 | (1+424358T+63430257600T2+424358p6T3+p12T4)2 |
| 83 | D4×C2 | 1−413441187988T2+57⋯86T4−413441187988p12T6+p24T8 |
| 89 | D4×C2 | 1−332250007216T2+48⋯59T4−332250007216p12T6+p24T8 |
| 97 | D4 | (1−1810864T+2248345168182T2−1810864p6T3+p12T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.470500397925486215641505829311, −7.965692940750314557097277917638, −7.69911966681077427095742372652, −7.40765341690456207880144272247, −7.38360132305516723843919135754, −6.83792085026262081554111260614, −6.58877983235400973149546385791, −6.04789163722634940481002238358, −6.01337324632194373119299402676, −5.67136035591161315748859067512, −5.51357133450215452671542029177, −4.87354585465978095580975210731, −4.70088089819609813924858913189, −4.55643415361811843409152634271, −4.14925118757044234608576974113, −3.55102942194812949667365946150, −3.41748306930860739481483671933, −3.15585639334753910017239072969, −2.97299123776464371834841582617, −2.15065574576836204074426493832, −1.75135500212716955847425025014, −1.44217208066409831776983601739, −1.02765213242165244982656942075, −0.60825224092598202943167468638, −0.38030557152875619794465872017,
0.38030557152875619794465872017, 0.60825224092598202943167468638, 1.02765213242165244982656942075, 1.44217208066409831776983601739, 1.75135500212716955847425025014, 2.15065574576836204074426493832, 2.97299123776464371834841582617, 3.15585639334753910017239072969, 3.41748306930860739481483671933, 3.55102942194812949667365946150, 4.14925118757044234608576974113, 4.55643415361811843409152634271, 4.70088089819609813924858913189, 4.87354585465978095580975210731, 5.51357133450215452671542029177, 5.67136035591161315748859067512, 6.01337324632194373119299402676, 6.04789163722634940481002238358, 6.58877983235400973149546385791, 6.83792085026262081554111260614, 7.38360132305516723843919135754, 7.40765341690456207880144272247, 7.69911966681077427095742372652, 7.965692940750314557097277917638, 8.470500397925486215641505829311