L(s) = 1 | − 11·4-s + 28·7-s − 22·13-s + 45·16-s − 132·19-s − 308·28-s − 126·31-s − 354·37-s − 272·43-s + 490·49-s + 242·52-s − 1.17e3·61-s − 363·64-s − 38·67-s − 188·73-s + 1.45e3·76-s − 690·79-s − 616·91-s + 1.98e3·97-s − 1.98e3·103-s − 2.55e3·109-s + 1.26e3·112-s − 4.75e3·121-s + 1.38e3·124-s + 127-s + 131-s − 3.69e3·133-s + ⋯ |
L(s) = 1 | − 1.37·4-s + 1.51·7-s − 0.469·13-s + 0.703·16-s − 1.59·19-s − 2.07·28-s − 0.730·31-s − 1.57·37-s − 0.964·43-s + 10/7·49-s + 0.645·52-s − 2.45·61-s − 0.708·64-s − 0.0692·67-s − 0.301·73-s + 2.19·76-s − 0.982·79-s − 0.709·91-s + 2.07·97-s − 1.89·103-s − 2.24·109-s + 1.06·112-s − 3.57·121-s + 1.00·124-s + 0.000698·127-s + 0.000666·131-s − 2.40·133-s + ⋯ |
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
7.45738×107 |
Root analytic conductor: |
9.63991 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 38⋅58⋅74, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1−pT)4 |
good | 2 | C22≀C2 | 1+11T2+19p2T4+11p6T6+p12T8 |
| 11 | C22≀C2 | 1+4757T2+9131212T4+4757p6T6+p12T8 |
| 13 | D4 | (1+11T+334pT2+11p3T3+p6T4)2 |
| 17 | C22≀C2 | 1+16103T2+110752648T4+16103p6T6+p12T8 |
| 19 | D4 | (1+66T+762pT2+66p3T3+p6T4)2 |
| 23 | C22≀C2 | 1+16580T2+227073517T4+16580p6T6+p12T8 |
| 29 | C22≀C2 | 1+57852T2+1698017789T4+57852p6T6+p12T8 |
| 31 | D4 | (1+63T+42068T2+63p3T3+p6T4)2 |
| 37 | D4 | (1+177T+90632T2+177p3T3+p6T4)2 |
| 41 | C22≀C2 | 1+93635T2+8952796516T4+93635p6T6+p12T8 |
| 43 | D4 | (1+136T+147517T2+136p3T3+p6T4)2 |
| 47 | C22≀C2 | 1+174744T2+15146248718T4+174744p6T6+p12T8 |
| 53 | C22≀C2 | 1+494267T2+102952583068T4+494267p6T6+p12T8 |
| 59 | C22≀C2 | 1+646299T2+187556725712T4+646299p6T6+p12T8 |
| 61 | D4 | (1+585T+372962T2+585p3T3+p6T4)2 |
| 67 | D4 | (1+19T+404134T2+19p3T3+p6T4)2 |
| 71 | C22≀C2 | 1+397485T2+173980338356T4+397485p6T6+p12T8 |
| 73 | D4 | (1+94T+606202T2+94p3T3+p6T4)2 |
| 79 | D4 | (1+345T+1001934T2+345p3T3+p6T4)2 |
| 83 | C22≀C2 | 1+1768119T2+1429880388068T4+1768119p6T6+p12T8 |
| 89 | C22≀C2 | 1+1398400T2+1454863323486T4+1398400p6T6+p12T8 |
| 97 | D4 | (1−990T+1951602T2−990p3T3+p6T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.76529487309728492491636262408, −6.59271941974846036949428184158, −6.21133145015693867588509372853, −6.05631413059383073384896999307, −6.00143164801777872697499944006, −5.55685221795902748955977923649, −5.23102834602827771244710121409, −5.22088089529499081455848141947, −5.17004850143888157817590030889, −4.56563497805090906697797444809, −4.51038209326343143389820487526, −4.49170702716514902735483591877, −4.43962317105888616865172870694, −3.73589721903544306901852113696, −3.64966226670344065188603638656, −3.64839936346230240244506448210, −3.27150044087074957163924660323, −2.68392326501282368897616330100, −2.65622382088595926026509903834, −2.31724247039840670114315912482, −1.95332170470552353019557658833, −1.84447864536553326190305873046, −1.25115933733093710893864531613, −1.19764643516750001531035071499, −1.13093303974104489748271046879, 0, 0, 0, 0,
1.13093303974104489748271046879, 1.19764643516750001531035071499, 1.25115933733093710893864531613, 1.84447864536553326190305873046, 1.95332170470552353019557658833, 2.31724247039840670114315912482, 2.65622382088595926026509903834, 2.68392326501282368897616330100, 3.27150044087074957163924660323, 3.64839936346230240244506448210, 3.64966226670344065188603638656, 3.73589721903544306901852113696, 4.43962317105888616865172870694, 4.49170702716514902735483591877, 4.51038209326343143389820487526, 4.56563497805090906697797444809, 5.17004850143888157817590030889, 5.22088089529499081455848141947, 5.23102834602827771244710121409, 5.55685221795902748955977923649, 6.00143164801777872697499944006, 6.05631413059383073384896999307, 6.21133145015693867588509372853, 6.59271941974846036949428184158, 6.76529487309728492491636262408