Properties

Label 8-1575e4-1.1-c3e4-0-5
Degree 88
Conductor 6.154×10126.154\times 10^{12}
Sign 11
Analytic cond. 7.45738×1077.45738\times 10^{7}
Root an. cond. 9.639919.63991
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 44

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11·4-s − 28·7-s + 22·13-s + 45·16-s − 132·19-s + 308·28-s − 126·31-s + 354·37-s + 272·43-s + 490·49-s − 242·52-s − 1.17e3·61-s − 363·64-s + 38·67-s + 188·73-s + 1.45e3·76-s − 690·79-s − 616·91-s − 1.98e3·97-s + 1.98e3·103-s − 2.55e3·109-s − 1.26e3·112-s − 4.75e3·121-s + 1.38e3·124-s + 127-s + 131-s + 3.69e3·133-s + ⋯
L(s)  = 1  − 1.37·4-s − 1.51·7-s + 0.469·13-s + 0.703·16-s − 1.59·19-s + 2.07·28-s − 0.730·31-s + 1.57·37-s + 0.964·43-s + 10/7·49-s − 0.645·52-s − 2.45·61-s − 0.708·64-s + 0.0692·67-s + 0.301·73-s + 2.19·76-s − 0.982·79-s − 0.709·91-s − 2.07·97-s + 1.89·103-s − 2.24·109-s − 1.06·112-s − 3.57·121-s + 1.00·124-s + 0.000698·127-s + 0.000666·131-s + 2.40·133-s + ⋯

Functional equation

Λ(s)=((385874)s/2ΓC(s)4L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}
Λ(s)=((385874)s/2ΓC(s+3/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 3858743^{8} \cdot 5^{8} \cdot 7^{4}
Sign: 11
Analytic conductor: 7.45738×1077.45738\times 10^{7}
Root analytic conductor: 9.639919.63991
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 44
Selberg data: (8, 385874, ( :3/2,3/2,3/2,3/2), 1)(8,\ 3^{8} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3 1 1
5 1 1
7C1C_1 (1+pT)4 ( 1 + p T )^{4}
good2C22C2C_2^2 \wr C_2 1+11T2+19p2T4+11p6T6+p12T8 1 + 11 T^{2} + 19 p^{2} T^{4} + 11 p^{6} T^{6} + p^{12} T^{8}
11C22C2C_2^2 \wr C_2 1+4757T2+9131212T4+4757p6T6+p12T8 1 + 4757 T^{2} + 9131212 T^{4} + 4757 p^{6} T^{6} + p^{12} T^{8}
13D4D_{4} (111T+334pT211p3T3+p6T4)2 ( 1 - 11 T + 334 p T^{2} - 11 p^{3} T^{3} + p^{6} T^{4} )^{2}
17C22C2C_2^2 \wr C_2 1+16103T2+110752648T4+16103p6T6+p12T8 1 + 16103 T^{2} + 110752648 T^{4} + 16103 p^{6} T^{6} + p^{12} T^{8}
19D4D_{4} (1+66T+762pT2+66p3T3+p6T4)2 ( 1 + 66 T + 762 p T^{2} + 66 p^{3} T^{3} + p^{6} T^{4} )^{2}
23C22C2C_2^2 \wr C_2 1+16580T2+227073517T4+16580p6T6+p12T8 1 + 16580 T^{2} + 227073517 T^{4} + 16580 p^{6} T^{6} + p^{12} T^{8}
29C22C2C_2^2 \wr C_2 1+57852T2+1698017789T4+57852p6T6+p12T8 1 + 57852 T^{2} + 1698017789 T^{4} + 57852 p^{6} T^{6} + p^{12} T^{8}
31D4D_{4} (1+63T+42068T2+63p3T3+p6T4)2 ( 1 + 63 T + 42068 T^{2} + 63 p^{3} T^{3} + p^{6} T^{4} )^{2}
37D4D_{4} (1177T+90632T2177p3T3+p6T4)2 ( 1 - 177 T + 90632 T^{2} - 177 p^{3} T^{3} + p^{6} T^{4} )^{2}
41C22C2C_2^2 \wr C_2 1+93635T2+8952796516T4+93635p6T6+p12T8 1 + 93635 T^{2} + 8952796516 T^{4} + 93635 p^{6} T^{6} + p^{12} T^{8}
43D4D_{4} (1136T+147517T2136p3T3+p6T4)2 ( 1 - 136 T + 147517 T^{2} - 136 p^{3} T^{3} + p^{6} T^{4} )^{2}
47C22C2C_2^2 \wr C_2 1+174744T2+15146248718T4+174744p6T6+p12T8 1 + 174744 T^{2} + 15146248718 T^{4} + 174744 p^{6} T^{6} + p^{12} T^{8}
53C22C2C_2^2 \wr C_2 1+494267T2+102952583068T4+494267p6T6+p12T8 1 + 494267 T^{2} + 102952583068 T^{4} + 494267 p^{6} T^{6} + p^{12} T^{8}
59C22C2C_2^2 \wr C_2 1+646299T2+187556725712T4+646299p6T6+p12T8 1 + 646299 T^{2} + 187556725712 T^{4} + 646299 p^{6} T^{6} + p^{12} T^{8}
61D4D_{4} (1+585T+372962T2+585p3T3+p6T4)2 ( 1 + 585 T + 372962 T^{2} + 585 p^{3} T^{3} + p^{6} T^{4} )^{2}
67D4D_{4} (119T+404134T219p3T3+p6T4)2 ( 1 - 19 T + 404134 T^{2} - 19 p^{3} T^{3} + p^{6} T^{4} )^{2}
71C22C2C_2^2 \wr C_2 1+397485T2+173980338356T4+397485p6T6+p12T8 1 + 397485 T^{2} + 173980338356 T^{4} + 397485 p^{6} T^{6} + p^{12} T^{8}
73D4D_{4} (194T+606202T294p3T3+p6T4)2 ( 1 - 94 T + 606202 T^{2} - 94 p^{3} T^{3} + p^{6} T^{4} )^{2}
79D4D_{4} (1+345T+1001934T2+345p3T3+p6T4)2 ( 1 + 345 T + 1001934 T^{2} + 345 p^{3} T^{3} + p^{6} T^{4} )^{2}
83C22C2C_2^2 \wr C_2 1+1768119T2+1429880388068T4+1768119p6T6+p12T8 1 + 1768119 T^{2} + 1429880388068 T^{4} + 1768119 p^{6} T^{6} + p^{12} T^{8}
89C22C2C_2^2 \wr C_2 1+1398400T2+1454863323486T4+1398400p6T6+p12T8 1 + 1398400 T^{2} + 1454863323486 T^{4} + 1398400 p^{6} T^{6} + p^{12} T^{8}
97D4D_{4} (1+990T+1951602T2+990p3T3+p6T4)2 ( 1 + 990 T + 1951602 T^{2} + 990 p^{3} T^{3} + p^{6} T^{4} )^{2}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.63696174865574883611972844360, −6.52948058013293642215949434825, −6.20642830598497974048347734189, −6.17110395030828208201658990292, −6.10702880066989189109128303553, −5.60035410689743955010456760449, −5.47363517113385842461577051025, −5.26852909626236097040674487360, −5.14334382571885853409104576655, −4.59197763588451983805407658445, −4.46219546241992902138788079343, −4.33825213797983399165174840191, −4.25495826248723634826451929876, −3.77225699248095646594731869118, −3.75373105645356305031978132027, −3.52074950236082126130273708813, −3.14588794821273491207127706704, −2.79404003475741885108642862281, −2.76650522359898395153222623748, −2.35800383015989326197550826542, −2.17412756180701093862960969476, −1.78746356226343367574356846662, −1.18601180477300205568132783563, −1.07983027148695969248977662005, −1.01983443144480862861872200845, 0, 0, 0, 0, 1.01983443144480862861872200845, 1.07983027148695969248977662005, 1.18601180477300205568132783563, 1.78746356226343367574356846662, 2.17412756180701093862960969476, 2.35800383015989326197550826542, 2.76650522359898395153222623748, 2.79404003475741885108642862281, 3.14588794821273491207127706704, 3.52074950236082126130273708813, 3.75373105645356305031978132027, 3.77225699248095646594731869118, 4.25495826248723634826451929876, 4.33825213797983399165174840191, 4.46219546241992902138788079343, 4.59197763588451983805407658445, 5.14334382571885853409104576655, 5.26852909626236097040674487360, 5.47363517113385842461577051025, 5.60035410689743955010456760449, 6.10702880066989189109128303553, 6.17110395030828208201658990292, 6.20642830598497974048347734189, 6.52948058013293642215949434825, 6.63696174865574883611972844360

Graph of the ZZ-function along the critical line