Properties

Label 8-14e8-1.1-c2e4-0-2
Degree $8$
Conductor $1475789056$
Sign $1$
Analytic cond. $813.512$
Root an. cond. $2.31097$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 4·4-s + 16·8-s − 18·9-s − 64·16-s + 72·18-s + 48·25-s − 160·29-s + 64·32-s − 72·36-s + 48·37-s − 192·50-s + 180·53-s + 640·58-s + 192·64-s − 288·72-s − 192·74-s + 81·81-s + 192·100-s − 720·106-s − 240·109-s + 120·113-s − 640·116-s − 242·121-s + 127-s − 768·128-s + 131-s + ⋯
L(s)  = 1  − 2·2-s + 4-s + 2·8-s − 2·9-s − 4·16-s + 4·18-s + 1.91·25-s − 5.51·29-s + 2·32-s − 2·36-s + 1.29·37-s − 3.83·50-s + 3.39·53-s + 11.0·58-s + 3·64-s − 4·72-s − 2.59·74-s + 81-s + 1.91·100-s − 6.79·106-s − 2.20·109-s + 1.06·113-s − 5.51·116-s − 2·121-s + 0.00787·127-s − 6·128-s + 0.00763·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(813.512\)
Root analytic conductor: \(2.31097\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 7^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.02792148789\)
\(L(\frac12)\) \(\approx\) \(0.02792148789\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
7 \( 1 \)
good3$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
5$C_2^3$ \( 1 - 48 T^{2} + 1679 T^{4} - 48 p^{4} T^{6} + p^{8} T^{8} \)
11$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 240 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^3$ \( 1 + 480 T^{2} + 146879 T^{4} + 480 p^{4} T^{6} + p^{8} T^{8} \)
19$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( ( 1 - 24 T - 793 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 1440 T^{2} + p^{4} T^{4} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
53$C_2^2$ \( ( 1 - 90 T + 5291 T^{2} - 90 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
61$C_2^3$ \( 1 + 2640 T^{2} - 6876241 T^{4} + 2640 p^{4} T^{6} + p^{8} T^{8} \)
67$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2^3$ \( 1 + 10560 T^{2} + 83115359 T^{4} + 10560 p^{4} T^{6} + p^{8} T^{8} \)
79$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
89$C_2^3$ \( 1 - 12480 T^{2} + 93008159 T^{4} - 12480 p^{4} T^{6} + p^{8} T^{8} \)
97$C_2^2$ \( ( 1 - 18720 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.883253036949959740882209147274, −8.837682638665124225857892499133, −8.402074294298609866684959566947, −8.321798879723122959348878690379, −7.891416830075019561770404743716, −7.62073644805965420570409585220, −7.50768944249032107557798457993, −7.11832383828138599828419622078, −7.02134768434682509181185119346, −6.58603455138705337937583758316, −6.10445916204506486360124568036, −5.66039179590342428210204253687, −5.49780886910951854378294515991, −5.49012020515541715314959942337, −4.87707834713967950220343730351, −4.68933470524542603314913856956, −3.91100139739326081580053935887, −3.88783155843764733070759406546, −3.63613174634580629027683636566, −2.86684889731592295233855442287, −2.44409237265019865090841488400, −2.14844261708241882081039850007, −1.47879645276394317695431017811, −0.925135470212029462559113337022, −0.092081982490783129469417749075, 0.092081982490783129469417749075, 0.925135470212029462559113337022, 1.47879645276394317695431017811, 2.14844261708241882081039850007, 2.44409237265019865090841488400, 2.86684889731592295233855442287, 3.63613174634580629027683636566, 3.88783155843764733070759406546, 3.91100139739326081580053935887, 4.68933470524542603314913856956, 4.87707834713967950220343730351, 5.49012020515541715314959942337, 5.49780886910951854378294515991, 5.66039179590342428210204253687, 6.10445916204506486360124568036, 6.58603455138705337937583758316, 7.02134768434682509181185119346, 7.11832383828138599828419622078, 7.50768944249032107557798457993, 7.62073644805965420570409585220, 7.891416830075019561770404743716, 8.321798879723122959348878690379, 8.402074294298609866684959566947, 8.837682638665124225857892499133, 8.883253036949959740882209147274

Graph of the $Z$-function along the critical line