Properties

Label 8-1488e4-1.1-c0e4-0-1
Degree $8$
Conductor $4.902\times 10^{12}$
Sign $1$
Analytic cond. $0.304116$
Root an. cond. $0.861747$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 2·13-s + 2·19-s − 2·27-s + 4·31-s − 2·37-s − 4·39-s + 2·43-s + 2·49-s + 4·57-s + 2·73-s − 4·81-s + 8·93-s − 4·97-s + 2·103-s − 4·109-s − 4·111-s − 2·117-s + 127-s + 4·129-s + 131-s + 137-s + 139-s + 4·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2·3-s + 9-s − 2·13-s + 2·19-s − 2·27-s + 4·31-s − 2·37-s − 4·39-s + 2·43-s + 2·49-s + 4·57-s + 2·73-s − 4·81-s + 8·93-s − 4·97-s + 2·103-s − 4·109-s − 4·111-s − 2·117-s + 127-s + 4·129-s + 131-s + 137-s + 139-s + 4·147-s + 149-s + 151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(0.304116\)
Root analytic conductor: \(0.861747\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.132532005\)
\(L(\frac12)\) \(\approx\) \(2.132532005\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_1$ \( ( 1 - T )^{4} \)
good5$C_2^3$ \( 1 - T^{4} + T^{8} \)
7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
41$C_2^3$ \( 1 - T^{4} + T^{8} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2^3$ \( 1 - T^{4} + T^{8} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
83$C_2^3$ \( 1 - T^{4} + T^{8} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2$ \( ( 1 + T + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.98862076991237046302970316419, −6.87229986578758896240434500639, −6.67676020691574627698621896683, −6.44336537445637030472902141655, −6.20205067709878527538397755497, −5.70761171693700806983269452152, −5.50941571005153683925693880276, −5.48944336888896938773546287539, −5.39009489689890052340480304046, −4.96141967028226395979456037872, −4.74536578721635215919933043812, −4.46538886779011262927949681678, −4.14557444829591670301149602783, −4.10086759046186615584538793277, −3.81873953914127123248587204921, −3.35093313902389467527853844616, −3.20371737051449272370168600072, −2.97951030655189822603981625199, −2.73957898884315249914658529658, −2.55685208186438792925535687420, −2.35687728200638243264532391716, −2.14926695070671086109540678659, −1.66083765800930797764087294820, −1.17206694885182745879743589511, −0.832594640287397168433054810559, 0.832594640287397168433054810559, 1.17206694885182745879743589511, 1.66083765800930797764087294820, 2.14926695070671086109540678659, 2.35687728200638243264532391716, 2.55685208186438792925535687420, 2.73957898884315249914658529658, 2.97951030655189822603981625199, 3.20371737051449272370168600072, 3.35093313902389467527853844616, 3.81873953914127123248587204921, 4.10086759046186615584538793277, 4.14557444829591670301149602783, 4.46538886779011262927949681678, 4.74536578721635215919933043812, 4.96141967028226395979456037872, 5.39009489689890052340480304046, 5.48944336888896938773546287539, 5.50941571005153683925693880276, 5.70761171693700806983269452152, 6.20205067709878527538397755497, 6.44336537445637030472902141655, 6.67676020691574627698621896683, 6.87229986578758896240434500639, 6.98862076991237046302970316419

Graph of the $Z$-function along the critical line