Properties

Label 8-1350e4-1.1-c2e4-0-20
Degree $8$
Conductor $3.322\times 10^{12}$
Sign $1$
Analytic cond. $1.83094\times 10^{6}$
Root an. cond. $6.06505$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 12·16-s + 4·19-s − 220·31-s + 146·49-s − 148·61-s + 32·64-s + 16·76-s + 412·79-s + 412·109-s + 160·121-s − 880·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 644·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4-s + 3/4·16-s + 4/19·19-s − 7.09·31-s + 2.97·49-s − 2.42·61-s + 1/2·64-s + 4/19·76-s + 5.21·79-s + 3.77·109-s + 1.32·121-s − 7.09·124-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.81·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.83094\times 10^{6}\)
Root analytic conductor: \(6.06505\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.579262788\)
\(L(\frac12)\) \(\approx\) \(5.579262788\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T^{2} )^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 - 73 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 80 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 322 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 560 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 986 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1664 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 55 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2113 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 1184 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 3337 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 784 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 5456 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 1750 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 37 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 7042 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 6554 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 8809 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 103 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 8576 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 7130 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 17977 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.58251772225984382539367814576, −6.52218317338465468222576199726, −6.30185839277659349372949311104, −5.90148346210468924674059658629, −5.76165548350577841976613544984, −5.42814671401744973322436212417, −5.41755018742160887865957360050, −5.41059059631925879128534116236, −4.94944367791120173476063107692, −4.63975683504326656420339888520, −4.42668464975752442634997037862, −3.92355871525766730337034110555, −3.83779495845727891775423915465, −3.72711163084712945607616897714, −3.37979546005683145871610511665, −3.24841380550074876001391147448, −2.92494294875113614456430353449, −2.53509265098749737065959228461, −2.13775430498580716940538839463, −1.88736904100896493851338419416, −1.84798554820125099844033317243, −1.68379129448735530128902158330, −1.00790921807703705487118789197, −0.45910326773142962357899361343, −0.45339320930794651548819766314, 0.45339320930794651548819766314, 0.45910326773142962357899361343, 1.00790921807703705487118789197, 1.68379129448735530128902158330, 1.84798554820125099844033317243, 1.88736904100896493851338419416, 2.13775430498580716940538839463, 2.53509265098749737065959228461, 2.92494294875113614456430353449, 3.24841380550074876001391147448, 3.37979546005683145871610511665, 3.72711163084712945607616897714, 3.83779495845727891775423915465, 3.92355871525766730337034110555, 4.42668464975752442634997037862, 4.63975683504326656420339888520, 4.94944367791120173476063107692, 5.41059059631925879128534116236, 5.41755018742160887865957360050, 5.42814671401744973322436212417, 5.76165548350577841976613544984, 5.90148346210468924674059658629, 6.30185839277659349372949311104, 6.52218317338465468222576199726, 6.58251772225984382539367814576

Graph of the $Z$-function along the critical line