L(s) = 1 | + 2·2-s + 4-s + 7-s − 2·8-s − 3·11-s − 2·13-s + 2·14-s − 4·16-s − 18·17-s + 2·19-s − 6·22-s + 3·23-s − 4·26-s + 28-s − 3·29-s + 2·31-s − 2·32-s − 36·34-s + 16·37-s + 4·38-s − 6·41-s − 17·43-s − 3·44-s + 6·46-s + 9·47-s + 6·49-s − 2·52-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1/2·4-s + 0.377·7-s − 0.707·8-s − 0.904·11-s − 0.554·13-s + 0.534·14-s − 16-s − 4.36·17-s + 0.458·19-s − 1.27·22-s + 0.625·23-s − 0.784·26-s + 0.188·28-s − 0.557·29-s + 0.359·31-s − 0.353·32-s − 6.17·34-s + 2.63·37-s + 0.648·38-s − 0.937·41-s − 2.59·43-s − 0.452·44-s + 0.884·46-s + 1.31·47-s + 6/7·49-s − 0.277·52-s + ⋯ |
Λ(s)=(=((24⋅312⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅312⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅312⋅58
|
Sign: |
1
|
Analytic conductor: |
13503.4 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅312⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.080155599 |
L(21) |
≈ |
3.080155599 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1−T+T2)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4×C2 | 1−T−5T2+8T3−20T4+8pT5−5p2T6−p3T7+p4T8 |
| 11 | D4×C2 | 1+3T−7T2−18T3+36T4−18pT5−7p2T6+3p3T7+p4T8 |
| 13 | D4×C2 | 1+2T+10T2−64T3−185T4−64pT5+10p2T6+2p3T7+p4T8 |
| 17 | D4 | (1+9T+46T2+9pT3+p2T4)2 |
| 19 | D4 | (1−T+30T2−pT3+p2T4)2 |
| 23 | D4×C2 | 1−3T−31T2+18T3+864T4+18pT5−31p2T6−3p3T7+p4T8 |
| 29 | D4×C2 | 1+3T−43T2−18T3+1602T4−18pT5−43p2T6+3p3T7+p4T8 |
| 31 | D4×C2 | 1−2T−26T2+64T3−185T4+64pT5−26p2T6−2p3T7+p4T8 |
| 37 | C2 | (1−4T+pT2)4 |
| 41 | C22 | (1+3T−32T2+3pT3+p2T4)2 |
| 43 | D4×C2 | 1+17T+139T2+1088T3+8224T4+1088pT5+139p2T6+17p3T7+p4T8 |
| 47 | D4×C2 | 1−9T−25T2−108T3+5220T4−108pT5−25p2T6−9p3T7+p4T8 |
| 53 | C22 | (1−26T2+p2T4)2 |
| 59 | D4×C2 | 1−3T−103T2+18T3+8532T4+18pT5−103p2T6−3p3T7+p4T8 |
| 61 | D4×C2 | 1+T−47T2−74T3−1478T4−74pT5−47p2T6+p3T7+p4T8 |
| 67 | C22 | (1+7T−18T2+7pT3+p2T4)2 |
| 71 | C2 | (1−6T+pT2)4 |
| 73 | D4 | (1−11T+102T2−11pT3+p2T4)2 |
| 79 | C22 | (1+2T−75T2+2pT3+p2T4)2 |
| 83 | D4×C2 | 1+9T−97T2+108T3+18072T4+108pT5−97p2T6+9p3T7+p4T8 |
| 89 | D4 | (1+15T+160T2+15pT3+p2T4)2 |
| 97 | D4×C2 | 1+11T−95T2+242T3+25510T4+242pT5−95p2T6+11p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.85939501111415035919907215913, −6.64360564819188993231464793411, −6.37221030211350448392634298960, −6.36858332515990500959934303678, −5.82101939346536012136074021965, −5.58035663198225969691658068112, −5.43063259331106849398368286666, −5.38505988644591281667851504292, −5.05287122772067412600783394698, −4.77247838521949474450934730247, −4.49309436647894845531686685883, −4.37766815554762989460098229166, −4.28606288454581634274843902220, −4.16250271313971930805068668779, −3.66027291201539329773769919083, −3.52963761548160609499957729765, −2.94958009748604298446120992469, −2.89505671910574810782854984780, −2.57623469464808744662191450288, −2.47099230915486505267427229671, −1.96516205169217768083173587473, −1.91976876368333965946803393861, −1.42986992319072475202883683175, −0.57768095327140122740756497340, −0.39325568901143939673284207071,
0.39325568901143939673284207071, 0.57768095327140122740756497340, 1.42986992319072475202883683175, 1.91976876368333965946803393861, 1.96516205169217768083173587473, 2.47099230915486505267427229671, 2.57623469464808744662191450288, 2.89505671910574810782854984780, 2.94958009748604298446120992469, 3.52963761548160609499957729765, 3.66027291201539329773769919083, 4.16250271313971930805068668779, 4.28606288454581634274843902220, 4.37766815554762989460098229166, 4.49309436647894845531686685883, 4.77247838521949474450934730247, 5.05287122772067412600783394698, 5.38505988644591281667851504292, 5.43063259331106849398368286666, 5.58035663198225969691658068112, 5.82101939346536012136074021965, 6.36858332515990500959934303678, 6.37221030211350448392634298960, 6.64360564819188993231464793411, 6.85939501111415035919907215913