Properties

Label 8-12e12-1.1-c2e4-0-3
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $4.91490\times 10^{6}$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·7-s − 12·13-s − 60·19-s + 12·25-s − 72·31-s − 28·37-s − 24·43-s + 38·49-s + 52·61-s − 204·67-s + 60·73-s − 324·79-s − 144·91-s − 180·97-s − 84·103-s + 168·109-s + 268·121-s + 127-s + 131-s − 720·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 12/7·7-s − 0.923·13-s − 3.15·19-s + 0.479·25-s − 2.32·31-s − 0.756·37-s − 0.558·43-s + 0.775·49-s + 0.852·61-s − 3.04·67-s + 0.821·73-s − 4.10·79-s − 1.58·91-s − 1.85·97-s − 0.815·103-s + 1.54·109-s + 2.21·121-s + 0.00787·127-s + 0.00763·131-s − 5.41·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(4.91490\times 10^{6}\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2198126333\)
\(L(\frac12)\) \(\approx\) \(0.2198126333\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4\times C_2$ \( 1 - 12 T^{2} + 134 T^{4} - 12 p^{4} T^{6} + p^{8} T^{8} \)
7$D_{4}$ \( ( 1 - 6 T + 5 p T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 268 T^{2} + 36870 T^{4} - 268 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 + 6 T + 275 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 1068 T^{2} + 451046 T^{4} - 1068 p^{4} T^{6} + p^{8} T^{8} \)
19$D_{4}$ \( ( 1 + 30 T + 659 T^{2} + 30 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 172 T^{2} + 582 p^{2} T^{4} - 172 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 3012 T^{2} + 3664166 T^{4} - 3012 p^{4} T^{6} + p^{8} T^{8} \)
31$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{4} \)
37$D_{4}$ \( ( 1 + 14 T + 2139 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 4068 T^{2} + 9622790 T^{4} - 4068 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 12 T + 2582 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 1708 T^{2} + 9980646 T^{4} - 1708 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 900 T^{2} - 4088986 T^{4} - 900 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 5068 T^{2} + 17955078 T^{4} - 5068 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 26 T + 1779 T^{2} - 26 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + 102 T + 10427 T^{2} + 102 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 9796 T^{2} + 64196934 T^{4} - 9796 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 30 T + 10595 T^{2} - 30 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 162 T + 18395 T^{2} + 162 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 12868 T^{2} + 132165798 T^{4} - 12868 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 6060 T^{2} - 29067226 T^{4} - 6060 p^{4} T^{6} + p^{8} T^{8} \)
97$D_{4}$ \( ( 1 + 90 T + 18251 T^{2} + 90 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.40040475933497421095949300945, −6.31916949241770260290393848156, −6.05301935882843816602580354156, −5.67277695627717199844987655509, −5.47084740816617531592746951103, −5.39211819352405522790173774945, −5.31506216881513899350685394631, −4.63710169090721210480640388344, −4.58858475658697840795497424309, −4.57890418499697644246847896875, −4.53898861635505837198898849152, −4.04929154191672374118865660813, −3.69060306487865981995615840381, −3.67783125921589836839656232448, −3.39271617620134723055169091747, −2.89671301977412894976433864848, −2.65780283478935440118947914592, −2.32294063312547569458962122706, −2.28042170162823266161052955718, −1.96081844252218136198612765274, −1.44363559123825621120762011341, −1.37727480203966989988149955201, −1.36701127164179076805582755977, −0.34265815273615916255227781925, −0.092211804433837282248876264636, 0.092211804433837282248876264636, 0.34265815273615916255227781925, 1.36701127164179076805582755977, 1.37727480203966989988149955201, 1.44363559123825621120762011341, 1.96081844252218136198612765274, 2.28042170162823266161052955718, 2.32294063312547569458962122706, 2.65780283478935440118947914592, 2.89671301977412894976433864848, 3.39271617620134723055169091747, 3.67783125921589836839656232448, 3.69060306487865981995615840381, 4.04929154191672374118865660813, 4.53898861635505837198898849152, 4.57890418499697644246847896875, 4.58858475658697840795497424309, 4.63710169090721210480640388344, 5.31506216881513899350685394631, 5.39211819352405522790173774945, 5.47084740816617531592746951103, 5.67277695627717199844987655509, 6.05301935882843816602580354156, 6.31916949241770260290393848156, 6.40040475933497421095949300945

Graph of the $Z$-function along the critical line