Properties

Label 8-1280e4-1.1-c3e4-0-5
Degree $8$
Conductor $2.684\times 10^{12}$
Sign $1$
Analytic cond. $3.25315\times 10^{7}$
Root an. cond. $8.69036$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 28·9-s + 136·17-s − 50·25-s + 1.08e3·41-s − 652·49-s + 4.31e3·73-s − 870·81-s − 3.56e3·89-s − 1.01e3·97-s + 6.79e3·113-s + 5.00e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 3.80e3·153-s + 157-s + 163-s + 167-s + 5.90e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1.03·9-s + 1.94·17-s − 2/5·25-s + 4.11·41-s − 1.90·49-s + 6.91·73-s − 1.19·81-s − 4.23·89-s − 1.06·97-s + 5.65·113-s + 3.75·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 2.01·153-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2.68·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(3.25315\times 10^{7}\)
Root analytic conductor: \(8.69036\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 5^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(5.277102519\)
\(L(\frac12)\) \(\approx\) \(5.277102519\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 14 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 326 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 2502 T^{2} + p^{6} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 2950 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 2 p T + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 3478 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 17574 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 24122 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 57058 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 58870 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 270 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 129986 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 190006 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 231190 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 404998 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 391462 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 64114 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 299662 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 1078 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 908638 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 81426 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 10 p T + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 254 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.76334199834488717695190898256, −6.14033637246231461809883166794, −5.98123965967583634683919885294, −5.86877200099169365062526465349, −5.66908079039429252359100058802, −5.60911064677210856813523532429, −5.01686517577959828682513994859, −4.88824420254756755105151917381, −4.88785944602431937320950888295, −4.46125160074986236842289185107, −4.10801582112110541595441152344, −3.97324091652113089137391785503, −3.95979359141391801373763779250, −3.32734011147698070760946091363, −3.32378646258497278403151611240, −3.10948735290792275387142931998, −2.69418925867076843712065486338, −2.36328466462289636218519248887, −2.10375323762857487357295089433, −1.92204110157228652596645084763, −1.48762615716734369709373136345, −1.06890589330679983074728970496, −0.903926971672448734952476180696, −0.78024702920185381145338010395, −0.23383919445252401361224454736, 0.23383919445252401361224454736, 0.78024702920185381145338010395, 0.903926971672448734952476180696, 1.06890589330679983074728970496, 1.48762615716734369709373136345, 1.92204110157228652596645084763, 2.10375323762857487357295089433, 2.36328466462289636218519248887, 2.69418925867076843712065486338, 3.10948735290792275387142931998, 3.32378646258497278403151611240, 3.32734011147698070760946091363, 3.95979359141391801373763779250, 3.97324091652113089137391785503, 4.10801582112110541595441152344, 4.46125160074986236842289185107, 4.88785944602431937320950888295, 4.88824420254756755105151917381, 5.01686517577959828682513994859, 5.60911064677210856813523532429, 5.66908079039429252359100058802, 5.86877200099169365062526465349, 5.98123965967583634683919885294, 6.14033637246231461809883166794, 6.76334199834488717695190898256

Graph of the $Z$-function along the critical line