Properties

Label 8-1280e4-1.1-c1e4-0-12
Degree $8$
Conductor $2.684\times 10^{12}$
Sign $1$
Analytic cond. $10913.1$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 4·13-s + 4·17-s + 38·25-s + 16·29-s + 20·37-s − 8·41-s + 28·53-s − 32·65-s + 28·73-s + 18·81-s − 32·85-s − 28·97-s + 48·109-s + 36·113-s − 20·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 3.57·5-s + 1.10·13-s + 0.970·17-s + 38/5·25-s + 2.97·29-s + 3.28·37-s − 1.24·41-s + 3.84·53-s − 3.96·65-s + 3.27·73-s + 2·81-s − 3.47·85-s − 2.84·97-s + 4.59·109-s + 3.38·113-s − 1.81·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(10913.1\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.460927437\)
\(L(\frac12)\) \(\approx\) \(2.460927437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} )^{2} \)
7$C_2^3$ \( 1 - 34 T^{4} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 542 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2^3$ \( 1 + 2702 T^{4} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 3326 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 2578 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 2606 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 114 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.20924957123185824353214197929, −6.58325554751861152459748669912, −6.54924465860822829057565795998, −6.34242811483932212847056428215, −6.20046281201546766898151929982, −5.87858510084929993875931566238, −5.49417876278610238580917008599, −5.22749700962056678580572602532, −4.99218500360125379989454933050, −4.82787669480671824358480454860, −4.58329646297923248248155734147, −4.29358123229920425813289483807, −4.15252359049748957888910733822, −3.93090077919749968533425366975, −3.55991014931965785906009800304, −3.52288164616723216047463528685, −3.42233251412544790252163464322, −2.86512113557611190551058533997, −2.67356148997737691957147354396, −2.53742082632452432688807137161, −2.05601865727651715919998004771, −1.31482852011629183228314243358, −0.844412216663648797129275997289, −0.830057158570300643312637949553, −0.57071229291142128264431326086, 0.57071229291142128264431326086, 0.830057158570300643312637949553, 0.844412216663648797129275997289, 1.31482852011629183228314243358, 2.05601865727651715919998004771, 2.53742082632452432688807137161, 2.67356148997737691957147354396, 2.86512113557611190551058533997, 3.42233251412544790252163464322, 3.52288164616723216047463528685, 3.55991014931965785906009800304, 3.93090077919749968533425366975, 4.15252359049748957888910733822, 4.29358123229920425813289483807, 4.58329646297923248248155734147, 4.82787669480671824358480454860, 4.99218500360125379989454933050, 5.22749700962056678580572602532, 5.49417876278610238580917008599, 5.87858510084929993875931566238, 6.20046281201546766898151929982, 6.34242811483932212847056428215, 6.54924465860822829057565795998, 6.58325554751861152459748669912, 7.20924957123185824353214197929

Graph of the $Z$-function along the critical line