L(s) = 1 | − 8·5-s + 4·13-s + 4·17-s + 38·25-s + 16·29-s + 20·37-s − 8·41-s + 28·53-s − 32·65-s + 28·73-s + 18·81-s − 32·85-s − 28·97-s + 48·109-s + 36·113-s − 20·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 3.57·5-s + 1.10·13-s + 0.970·17-s + 38/5·25-s + 2.97·29-s + 3.28·37-s − 1.24·41-s + 3.84·53-s − 3.96·65-s + 3.27·73-s + 2·81-s − 3.47·85-s − 2.84·97-s + 4.59·109-s + 3.38·113-s − 1.81·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((232⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((232⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
232⋅54
|
Sign: |
1
|
Analytic conductor: |
10913.1 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 232⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.460927437 |
L(21) |
≈ |
2.460927437 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | (1+4T+pT2)2 |
good | 3 | C2×C2 | (1−pT2)2(1+pT2)2 |
| 7 | C23 | 1−34T4+p4T8 |
| 11 | C22 | (1+10T2+p2T4)2 |
| 13 | C2 | (1−6T+pT2)2(1+4T+pT2)2 |
| 17 | C22 | (1−2T+2T2−2pT3+p2T4)2 |
| 19 | C22 | (1+10T2+p2T4)2 |
| 23 | C23 | 1+542T4+p4T8 |
| 29 | C2 | (1−4T+pT2)4 |
| 31 | C22 | (1−50T2+p2T4)2 |
| 37 | C2 | (1−12T+pT2)2(1+2T+pT2)2 |
| 41 | C2 | (1+2T+pT2)4 |
| 43 | C23 | 1+2702T4+p4T8 |
| 47 | C23 | 1+3326T4+p4T8 |
| 53 | C22 | (1−14T+98T2−14pT3+p2T4)2 |
| 59 | C22 | (1−70T2+p2T4)2 |
| 61 | C22 | (1−86T2+p2T4)2 |
| 67 | C23 | 1−2578T4+p4T8 |
| 71 | C22 | (1−34T2+p2T4)2 |
| 73 | C22 | (1−14T+98T2−14pT3+p2T4)2 |
| 79 | C2 | (1+pT2)4 |
| 83 | C23 | 1+2606T4+p4T8 |
| 89 | C22 | (1−114T2+p2T4)2 |
| 97 | C22 | (1+14T+98T2+14pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.20924957123185824353214197929, −6.58325554751861152459748669912, −6.54924465860822829057565795998, −6.34242811483932212847056428215, −6.20046281201546766898151929982, −5.87858510084929993875931566238, −5.49417876278610238580917008599, −5.22749700962056678580572602532, −4.99218500360125379989454933050, −4.82787669480671824358480454860, −4.58329646297923248248155734147, −4.29358123229920425813289483807, −4.15252359049748957888910733822, −3.93090077919749968533425366975, −3.55991014931965785906009800304, −3.52288164616723216047463528685, −3.42233251412544790252163464322, −2.86512113557611190551058533997, −2.67356148997737691957147354396, −2.53742082632452432688807137161, −2.05601865727651715919998004771, −1.31482852011629183228314243358, −0.844412216663648797129275997289, −0.830057158570300643312637949553, −0.57071229291142128264431326086,
0.57071229291142128264431326086, 0.830057158570300643312637949553, 0.844412216663648797129275997289, 1.31482852011629183228314243358, 2.05601865727651715919998004771, 2.53742082632452432688807137161, 2.67356148997737691957147354396, 2.86512113557611190551058533997, 3.42233251412544790252163464322, 3.52288164616723216047463528685, 3.55991014931965785906009800304, 3.93090077919749968533425366975, 4.15252359049748957888910733822, 4.29358123229920425813289483807, 4.58329646297923248248155734147, 4.82787669480671824358480454860, 4.99218500360125379989454933050, 5.22749700962056678580572602532, 5.49417876278610238580917008599, 5.87858510084929993875931566238, 6.20046281201546766898151929982, 6.34242811483932212847056428215, 6.54924465860822829057565795998, 6.58325554751861152459748669912, 7.20924957123185824353214197929