Properties

Label 8-126e4-1.1-c4e4-0-5
Degree $8$
Conductor $252047376$
Sign $1$
Analytic cond. $28777.9$
Root an. cond. $3.60896$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·4-s + 88·13-s + 192·16-s − 1.00e3·19-s + 2.37e3·25-s − 1.01e3·31-s − 928·37-s − 592·43-s + 686·49-s − 1.40e3·52-s − 1.25e4·61-s − 2.04e3·64-s + 1.68e4·67-s − 6.00e3·73-s + 1.60e4·76-s − 1.58e4·79-s + 5.27e4·97-s − 3.79e4·100-s − 3.09e4·103-s + 2.00e4·109-s − 7.40e3·121-s + 1.62e4·124-s + 127-s + 131-s + 137-s + 139-s + 1.48e4·148-s + ⋯
L(s)  = 1  − 4-s + 0.520·13-s + 3/4·16-s − 2.77·19-s + 3.79·25-s − 1.05·31-s − 0.677·37-s − 0.320·43-s + 2/7·49-s − 0.520·52-s − 3.37·61-s − 1/2·64-s + 3.75·67-s − 1.12·73-s + 2.77·76-s − 2.53·79-s + 5.60·97-s − 3.79·100-s − 2.91·103-s + 1.68·109-s − 0.505·121-s + 1.05·124-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 0.677·148-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(28777.9\)
Root analytic conductor: \(3.60896\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 2, 2, 2, 2 ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.442229376\)
\(L(\frac12)\) \(\approx\) \(2.442229376\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
3 \( 1 \)
7$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
good5$D_4\times C_2$ \( 1 - 2372 T^{2} + 2185046 T^{4} - 2372 p^{8} T^{6} + p^{16} T^{8} \)
11$D_4\times C_2$ \( 1 + 7408 T^{2} + 44053826 T^{4} + 7408 p^{8} T^{6} + p^{16} T^{8} \)
13$D_{4}$ \( ( 1 - 44 T + 54806 T^{2} - 44 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 155492 T^{2} + 19324224086 T^{4} - 155492 p^{8} T^{6} + p^{16} T^{8} \)
19$D_{4}$ \( ( 1 + 500 T + 212010 T^{2} + 500 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 507248 T^{2} + 194115433730 T^{4} - 507248 p^{8} T^{6} + p^{16} T^{8} \)
29$D_4\times C_2$ \( 1 - 2696528 T^{2} + 2815621714370 T^{4} - 2696528 p^{8} T^{6} + p^{16} T^{8} \)
31$D_{4}$ \( ( 1 + 508 T + 1273130 T^{2} + 508 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 464 T + 3357618 T^{2} + 464 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 10422916 T^{2} + 43126586993814 T^{4} - 10422916 p^{8} T^{6} + p^{16} T^{8} \)
43$D_{4}$ \( ( 1 + 296 T + 6229506 T^{2} + 296 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 3843028 T^{2} + 610858828518 T^{4} - 3843028 p^{8} T^{6} + p^{16} T^{8} \)
53$D_4\times C_2$ \( 1 - 31511200 T^{2} + 372757754218434 T^{4} - 31511200 p^{8} T^{6} + p^{16} T^{8} \)
59$D_4\times C_2$ \( 1 - 1937300 T^{2} + 227869699778342 T^{4} - 1937300 p^{8} T^{6} + p^{16} T^{8} \)
61$D_{4}$ \( ( 1 + 6280 T + 26046614 T^{2} + 6280 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 8436 T + 38430934 T^{2} - 8436 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 60749936 T^{2} + 2213591693878274 T^{4} - 60749936 p^{8} T^{6} + p^{16} T^{8} \)
73$D_{4}$ \( ( 1 + 3000 T + 33509782 T^{2} + 3000 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 100 p T + 36724934 T^{2} + 100 p^{5} T^{3} + p^{8} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 181804868 T^{2} + 12763622956082630 T^{4} - 181804868 p^{8} T^{6} + p^{16} T^{8} \)
89$D_4\times C_2$ \( 1 - 28212772 T^{2} - 86397249754794 T^{4} - 28212772 p^{8} T^{6} + p^{16} T^{8} \)
97$D_{4}$ \( ( 1 - 26352 T + 344559046 T^{2} - 26352 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.038452742620995364699432600346, −8.735593249556021105776468429805, −8.723896995866102848796930713662, −8.310969915508543954246387957730, −8.244315655307792179747170530645, −7.63339734673133968949897202366, −7.40674362607871245497940827565, −6.98716921236462178382659467408, −6.65442399290120356520662936338, −6.59925525508125677202388712487, −6.00581513799457170710362174819, −5.97390822934961658408020116806, −5.29983059166381905957052996025, −5.12204784073315868159834129109, −4.68812769680752813254673395231, −4.48638421262843312383433688425, −4.18124056293598204300847765658, −3.75405222423016150107439024480, −3.16023288288749205138813422639, −3.08645147843145943931366383509, −2.44381834137479984557329885580, −1.81000757959368747908066024688, −1.51133771911047644930286786238, −0.60048577969609700973587408455, −0.49282594143390157734750070930, 0.49282594143390157734750070930, 0.60048577969609700973587408455, 1.51133771911047644930286786238, 1.81000757959368747908066024688, 2.44381834137479984557329885580, 3.08645147843145943931366383509, 3.16023288288749205138813422639, 3.75405222423016150107439024480, 4.18124056293598204300847765658, 4.48638421262843312383433688425, 4.68812769680752813254673395231, 5.12204784073315868159834129109, 5.29983059166381905957052996025, 5.97390822934961658408020116806, 6.00581513799457170710362174819, 6.59925525508125677202388712487, 6.65442399290120356520662936338, 6.98716921236462178382659467408, 7.40674362607871245497940827565, 7.63339734673133968949897202366, 8.244315655307792179747170530645, 8.310969915508543954246387957730, 8.723896995866102848796930713662, 8.735593249556021105776468429805, 9.038452742620995364699432600346

Graph of the $Z$-function along the critical line