Properties

Label 8-1200e4-1.1-c2e4-0-32
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 16·13-s + 48·17-s + 48·29-s + 160·37-s + 168·41-s + 52·49-s + 192·53-s + 344·61-s − 88·73-s + 27·81-s − 264·89-s + 344·97-s + 720·101-s − 296·109-s + 96·113-s + 96·117-s + 340·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 288·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2/3·9-s − 1.23·13-s + 2.82·17-s + 1.65·29-s + 4.32·37-s + 4.09·41-s + 1.06·49-s + 3.62·53-s + 5.63·61-s − 1.20·73-s + 1/3·81-s − 2.96·89-s + 3.54·97-s + 7.12·101-s − 2.71·109-s + 0.849·113-s + 0.820·117-s + 2.80·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 1.88·153-s + 0.00636·157-s + 0.00613·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(11.85491734\)
\(L(\frac12)\) \(\approx\) \(11.85491734\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 52 T^{2} + 2598 T^{4} - 52 p^{4} T^{6} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 - 340 T^{2} + 55302 T^{4} - 340 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 + 8 T + 174 T^{2} + 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 - 24 T + 542 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 580 T^{2} + 160422 T^{4} - 580 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 1540 T^{2} + 1106502 T^{4} - 1540 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 - 24 T + 206 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 2980 T^{2} + 3882822 T^{4} - 2980 p^{4} T^{6} + p^{8} T^{8} \)
37$D_{4}$ \( ( 1 - 80 T + 4158 T^{2} - 80 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{4} \)
43$D_4\times C_2$ \( 1 + 380 T^{2} + 6136422 T^{4} + 380 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 6532 T^{2} + 19688838 T^{4} - 6532 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 96 T + 6302 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 10900 T^{2} + 53588742 T^{4} - 10900 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 172 T + 14118 T^{2} - 172 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 12100 T^{2} + 70269222 T^{4} - 12100 p^{4} T^{6} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 + 3452 T^{2} + 51544518 T^{4} + 3452 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 + 44 T + 4662 T^{2} + 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 12242 T^{2} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 9412 T^{2} + 57343398 T^{4} - 9412 p^{4} T^{6} + p^{8} T^{8} \)
89$D_{4}$ \( ( 1 + 132 T + 19478 T^{2} + 132 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 172 T + 23334 T^{2} - 172 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.92129365393768373818402297196, −6.42812475470735212054041642662, −6.07885587498022083438704556789, −6.04006325126179651838228796486, −6.03774128105043014418913924145, −5.51032423594509161105775176854, −5.47481346048837658251010457853, −5.45318064033465931435727987333, −5.02645162899157424396197638739, −4.50676030945575431262642645611, −4.44339206843992525112561610912, −4.40997371042790358524885752465, −4.08392831726580787445734147682, −3.63151412852490608140464249459, −3.41083337975440712382313694888, −3.36467111030648667091806975290, −2.71142721468103668879598543355, −2.51749279890710703234685855653, −2.46317239087533692177992581327, −2.38447155884635029685521417135, −1.89227992603190522825187849984, −0.897310002391564029658440084319, −0.877108810427134899606980037207, −0.847888882755244096955368521552, −0.69077345616103996322672489175, 0.69077345616103996322672489175, 0.847888882755244096955368521552, 0.877108810427134899606980037207, 0.897310002391564029658440084319, 1.89227992603190522825187849984, 2.38447155884635029685521417135, 2.46317239087533692177992581327, 2.51749279890710703234685855653, 2.71142721468103668879598543355, 3.36467111030648667091806975290, 3.41083337975440712382313694888, 3.63151412852490608140464249459, 4.08392831726580787445734147682, 4.40997371042790358524885752465, 4.44339206843992525112561610912, 4.50676030945575431262642645611, 5.02645162899157424396197638739, 5.45318064033465931435727987333, 5.47481346048837658251010457853, 5.51032423594509161105775176854, 6.03774128105043014418913924145, 6.04006325126179651838228796486, 6.07885587498022083438704556789, 6.42812475470735212054041642662, 6.92129365393768373818402297196

Graph of the $Z$-function along the critical line