Properties

Label 8-1200e4-1.1-c2e4-0-24
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17·9-s + 44·19-s + 184·31-s + 68·49-s − 64·61-s + 272·79-s + 208·81-s − 704·109-s − 146·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 668·169-s + 748·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 17/9·9-s + 2.31·19-s + 5.93·31-s + 1.38·49-s − 1.04·61-s + 3.44·79-s + 2.56·81-s − 6.45·109-s − 1.20·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.95·169-s + 4.37·171-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(7.954092761\)
\(L(\frac12)\) \(\approx\) \(7.954092761\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 17 T^{2} + p^{4} T^{4} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 - 34 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )^{2}( 1 + 13 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 334 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 263 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 11 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 202 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 422 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 46 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2482 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 527 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 146 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 3158 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 4358 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 1922 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 16 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 3791 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 1258 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 457 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 68 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 13463 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 13007 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 18334 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.67436252943759234519554843560, −6.51280482539555639546734414919, −6.38188353578158092494323675043, −6.24281035635325545081514209020, −6.06086552444017296486121887015, −5.56633841750845384883456934740, −5.31793937448084755863499573908, −5.02368519325453347194959849554, −4.96733628606506432308480739509, −4.90239361223595425291033578893, −4.43437440465103462244890480756, −4.15915230797381405777562245236, −4.02759186349882828533524722298, −3.96113236563399997059489270789, −3.40341900252394626303738754827, −3.17895047070393791056631547032, −3.00394983330609464481894035068, −2.46404992187928207551284584523, −2.43601108656783332642764654077, −2.33134638063580327888358275835, −1.43245983898348329395015517444, −1.22430071601473021767067985341, −1.13954497021868205143885352021, −0.953048063067222380272876681557, −0.36663172597538225547862270408, 0.36663172597538225547862270408, 0.953048063067222380272876681557, 1.13954497021868205143885352021, 1.22430071601473021767067985341, 1.43245983898348329395015517444, 2.33134638063580327888358275835, 2.43601108656783332642764654077, 2.46404992187928207551284584523, 3.00394983330609464481894035068, 3.17895047070393791056631547032, 3.40341900252394626303738754827, 3.96113236563399997059489270789, 4.02759186349882828533524722298, 4.15915230797381405777562245236, 4.43437440465103462244890480756, 4.90239361223595425291033578893, 4.96733628606506432308480739509, 5.02368519325453347194959849554, 5.31793937448084755863499573908, 5.56633841750845384883456934740, 6.06086552444017296486121887015, 6.24281035635325545081514209020, 6.38188353578158092494323675043, 6.51280482539555639546734414919, 6.67436252943759234519554843560

Graph of the $Z$-function along the critical line