Properties

Label 8-1200e4-1.1-c1e4-0-12
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $8430.11$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·31-s + 56·61-s − 9·81-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 2.87·31-s + 7.17·61-s − 81-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + 0.0644·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(8430.11\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.087427694\)
\(L(\frac12)\) \(\approx\) \(2.087427694\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2^3$ \( 1 - 94 T^{4} + p^{4} T^{8} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^3$ \( 1 + 146 T^{4} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
37$C_2^3$ \( 1 - 2062 T^{4} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2^3$ \( 1 - 3214 T^{4} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
67$C_2^3$ \( 1 + 5906 T^{4} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^3$ \( 1 - 8542 T^{4} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^3$ \( 1 - 18814 T^{4} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.00605239952626062650900349976, −6.90226927090688412518711403268, −6.46906986043415664692664949963, −6.33360383097670384700274976645, −6.14637066227117834742440675677, −5.69729957882976061251911394362, −5.62640547881428672876678861360, −5.47592838312825359066453933285, −5.19937805363465350268584380509, −4.95108372630036333510499726638, −4.83530600642989268922747141246, −4.48676846074074524970299303122, −3.97674849085225271863939745011, −3.81545736973331554632601859933, −3.78715910760486859992191564319, −3.72538329168478721571651129590, −3.06408519491111952680578615938, −2.97525660020543560451748516251, −2.58936030361621522850748381655, −2.14241736159813608414000170484, −1.97157040146593949985367041054, −1.91299801198480199484279969546, −1.16354033796269817599740498782, −0.894976030896496959444208243933, −0.34629963828253387581457182745, 0.34629963828253387581457182745, 0.894976030896496959444208243933, 1.16354033796269817599740498782, 1.91299801198480199484279969546, 1.97157040146593949985367041054, 2.14241736159813608414000170484, 2.58936030361621522850748381655, 2.97525660020543560451748516251, 3.06408519491111952680578615938, 3.72538329168478721571651129590, 3.78715910760486859992191564319, 3.81545736973331554632601859933, 3.97674849085225271863939745011, 4.48676846074074524970299303122, 4.83530600642989268922747141246, 4.95108372630036333510499726638, 5.19937805363465350268584380509, 5.47592838312825359066453933285, 5.62640547881428672876678861360, 5.69729957882976061251911394362, 6.14637066227117834742440675677, 6.33360383097670384700274976645, 6.46906986043415664692664949963, 6.90226927090688412518711403268, 7.00605239952626062650900349976

Graph of the $Z$-function along the critical line