L(s) = 1 | + 32·17-s + 428·25-s − 1.24e3·41-s − 476·49-s − 984·73-s − 5.56e3·89-s − 1.20e3·97-s − 6.20e3·113-s + 1.74e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 7.98e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 0.456·17-s + 3.42·25-s − 4.75·41-s − 1.38·49-s − 1.57·73-s − 6.63·89-s − 1.26·97-s − 5.16·113-s + 1.30·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 3.63·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯ |
Λ(s)=(=((228⋅38)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((228⋅38)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅38
|
Sign: |
1
|
Analytic conductor: |
2.13439×107 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅38, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.260274951 |
L(21) |
≈ |
1.260274951 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−214T2+p6T4)2 |
| 7 | C22 | (1+34pT2+p6T4)2 |
| 11 | C22 | (1−870T2+p6T4)2 |
| 13 | C22 | (1−3994T2+p6T4)2 |
| 17 | C2 | (1−8T+p3T2)4 |
| 19 | C22 | (1−6550T2+p6T4)2 |
| 23 | C22 | (1−4338T2+p6T4)2 |
| 29 | C22 | (1−46662T2+p6T4)2 |
| 31 | C22 | (1+59134T2+p6T4)2 |
| 37 | C22 | (1−74410T2+p6T4)2 |
| 41 | C2 | (1+312T+p3T2)4 |
| 43 | C22 | (1+20186T2+p6T4)2 |
| 47 | C22 | (1+178974T2+p6T4)2 |
| 53 | C22 | (1−226998T2+p6T4)2 |
| 59 | C22 | (1−346246T2+p6T4)2 |
| 61 | C22 | (1−436538T2+p6T4)2 |
| 67 | C22 | (1−343478T2+p6T4)2 |
| 71 | C22 | (1+257070T2+p6T4)2 |
| 73 | C2 | (1+246T+p3T2)4 |
| 79 | C22 | (1+931870T2+p6T4)2 |
| 83 | C22 | (1−195606T2+p6T4)2 |
| 89 | C2 | (1+1392T+p3T2)4 |
| 97 | C2 | (1+302T+p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.70452409333778366591594433586, −6.53481314099422948401845256461, −6.49269611964710388689063653938, −5.65347616855220775776091121568, −5.59942407148581592771416956372, −5.56590742878226441953638798846, −5.40490202981920661751287285999, −4.88867339007516906535949521292, −4.85134172251848842998253374235, −4.55380884912313213330433087619, −4.54520414980913956935308001048, −3.91959040054945740303870633145, −3.77781344438274703600685602465, −3.67275405902544004804967415232, −3.11875767581333603192759740542, −2.96907258457680943611021892785, −2.82864035433359919397687291548, −2.70417249903300656061131754117, −2.24457335923841451895262156729, −1.51086005701955343445194400258, −1.50701856831571009167156852478, −1.45568381472207773888265977932, −1.10105881699621432751345220702, −0.39322742959378937911642672746, −0.17824465339069045753305772108,
0.17824465339069045753305772108, 0.39322742959378937911642672746, 1.10105881699621432751345220702, 1.45568381472207773888265977932, 1.50701856831571009167156852478, 1.51086005701955343445194400258, 2.24457335923841451895262156729, 2.70417249903300656061131754117, 2.82864035433359919397687291548, 2.96907258457680943611021892785, 3.11875767581333603192759740542, 3.67275405902544004804967415232, 3.77781344438274703600685602465, 3.91959040054945740303870633145, 4.54520414980913956935308001048, 4.55380884912313213330433087619, 4.85134172251848842998253374235, 4.88867339007516906535949521292, 5.40490202981920661751287285999, 5.56590742878226441953638798846, 5.59942407148581592771416956372, 5.65347616855220775776091121568, 6.49269611964710388689063653938, 6.53481314099422948401845256461, 6.70452409333778366591594433586