L(s) = 1 | + 136·17-s + 484·25-s − 104·41-s − 972·49-s − 1.35e3·73-s + 936·89-s − 712·97-s − 5.51e3·113-s + 4.52e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.65e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 1.94·17-s + 3.87·25-s − 0.396·41-s − 2.83·49-s − 2.16·73-s + 1.11·89-s − 0.745·97-s − 4.58·113-s + 3.39·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2.57·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯ |
Λ(s)=(=((228⋅38)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((228⋅38)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅38
|
Sign: |
1
|
Analytic conductor: |
2.13439×107 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅38, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.272842662 |
L(21) |
≈ |
1.272842662 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−242T2+p6T4)2 |
| 7 | C22 | (1+486T2+p6T4)2 |
| 11 | C22 | (1−2262T2+p6T4)2 |
| 13 | C22 | (1−2826T2+p6T4)2 |
| 17 | C2 | (1−2pT+p3T2)4 |
| 19 | C22 | (1−11014T2+p6T4)2 |
| 23 | C22 | (1+20462T2+p6T4)2 |
| 29 | C22 | (1−8450T2+p6T4)2 |
| 31 | C22 | (1+47414T2+p6T4)2 |
| 37 | C22 | (1−27578T2+p6T4)2 |
| 41 | C2 | (1+26T+p3T2)4 |
| 43 | C22 | (1−95510T2+p6T4)2 |
| 47 | C22 | (1+88574T2+p6T4)2 |
| 53 | C22 | (1+166894T2+p6T4)2 |
| 59 | C22 | (1−278262T2+p6T4)2 |
| 61 | C22 | (1+86838T2+p6T4)2 |
| 67 | C22 | (1−207142T2+p6T4)2 |
| 71 | C22 | (1+604430T2+p6T4)2 |
| 73 | C2 | (1+338T+p3T2)4 |
| 79 | C22 | (1+363350T2+p6T4)2 |
| 83 | C22 | (1−70278T2+p6T4)2 |
| 89 | C2 | (1−234T+p3T2)4 |
| 97 | C2 | (1+178T+p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.63135501773375096995467674486, −6.50262763593968272060045176338, −6.14984553361220615793207428036, −5.88406683967119816162935653518, −5.68787735160044874478662116797, −5.57700880814428976868814636181, −5.16276399423517679026567943673, −5.05105394392340921228318370694, −4.80639317263846726247507254275, −4.61542322328332252282337477321, −4.28906949436810009805523582003, −4.28556533417888526557360441913, −3.64761301963849003627339300308, −3.45421463787945058567909111710, −3.16850331101589513900898739075, −3.12214587073399288990465150740, −2.86893437219061693048737501733, −2.67386613528431030394105818079, −2.02914152183182118196556125037, −1.92922015367171837719337752878, −1.44398644820311621684666066920, −1.24064297640487049660214893673, −0.847554099171917711023957890501, −0.796901520061660001420263519702, −0.11922734409271183735413540236,
0.11922734409271183735413540236, 0.796901520061660001420263519702, 0.847554099171917711023957890501, 1.24064297640487049660214893673, 1.44398644820311621684666066920, 1.92922015367171837719337752878, 2.02914152183182118196556125037, 2.67386613528431030394105818079, 2.86893437219061693048737501733, 3.12214587073399288990465150740, 3.16850331101589513900898739075, 3.45421463787945058567909111710, 3.64761301963849003627339300308, 4.28556533417888526557360441913, 4.28906949436810009805523582003, 4.61542322328332252282337477321, 4.80639317263846726247507254275, 5.05105394392340921228318370694, 5.16276399423517679026567943673, 5.57700880814428976868814636181, 5.68787735160044874478662116797, 5.88406683967119816162935653518, 6.14984553361220615793207428036, 6.50262763593968272060045176338, 6.63135501773375096995467674486