Properties

Label 8-1152e4-1.1-c1e4-0-15
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $7160.08$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s − 3·9-s − 28·17-s − 8·23-s − 10·25-s − 16·31-s − 6·41-s + 8·47-s + 30·49-s + 24·63-s + 32·71-s − 12·73-s − 16·79-s + 24·89-s − 2·97-s + 8·103-s − 4·113-s + 224·119-s − 21·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 84·153-s + 157-s + ⋯
L(s)  = 1  − 3.02·7-s − 9-s − 6.79·17-s − 1.66·23-s − 2·25-s − 2.87·31-s − 0.937·41-s + 1.16·47-s + 30/7·49-s + 3.02·63-s + 3.79·71-s − 1.40·73-s − 1.80·79-s + 2.54·89-s − 0.203·97-s + 0.788·103-s − 0.376·113-s + 20.5·119-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 6.79·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(7160.08\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^3$ \( 1 + 21 T^{2} + 320 T^{4} + 21 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
17$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 4 T - 7 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$$\times$$C_2^2$ \( ( 1 - 10 T + 71 T^{2} - 10 p T^{3} + p^{2} T^{4} )( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
31$C_2^2$ \( ( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 85 T^{2} + 5376 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 4 T - 31 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 37 T^{2} - 2112 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 125 T^{2} + 11136 T^{4} + 125 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 90 T^{2} + 1211 T^{4} - 90 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + T - 96 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36190361563683479198312413726, −7.10825857892951713775742737015, −6.75392567472553002682312124933, −6.73559535660070100796950963029, −6.63800177647304519237626200782, −6.28551888208523037909502203752, −6.24573219751533747367215823476, −6.04993745392372623895262013727, −5.87032629960682260605032151483, −5.55833982843767662372845153475, −5.13423419999117884573344469879, −4.93618791677228579690970693228, −4.86371209358299049337210215971, −4.22785720497696196667211052070, −4.03456380393944183725638612500, −3.98949330804812137268362526078, −3.89881410918223008829561556889, −3.43817703627823871619380424630, −3.39659158085874796893480546075, −2.72277130523598161042220954684, −2.52626708933821913045964312331, −2.24266118522025334928963041377, −2.15956956772968935763049049066, −2.10676770694954226864533411573, −1.37024506425538815992285015538, 0, 0, 0, 0, 1.37024506425538815992285015538, 2.10676770694954226864533411573, 2.15956956772968935763049049066, 2.24266118522025334928963041377, 2.52626708933821913045964312331, 2.72277130523598161042220954684, 3.39659158085874796893480546075, 3.43817703627823871619380424630, 3.89881410918223008829561556889, 3.98949330804812137268362526078, 4.03456380393944183725638612500, 4.22785720497696196667211052070, 4.86371209358299049337210215971, 4.93618791677228579690970693228, 5.13423419999117884573344469879, 5.55833982843767662372845153475, 5.87032629960682260605032151483, 6.04993745392372623895262013727, 6.24573219751533747367215823476, 6.28551888208523037909502203752, 6.63800177647304519237626200782, 6.73559535660070100796950963029, 6.75392567472553002682312124933, 7.10825857892951713775742737015, 7.36190361563683479198312413726

Graph of the $Z$-function along the critical line