Properties

Label 8-105e4-1.1-c5e4-0-2
Degree $8$
Conductor $121550625$
Sign $1$
Analytic cond. $80426.5$
Root an. cond. $4.10369$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 36·3-s + 43·4-s + 100·5-s + 360·6-s + 196·7-s + 164·8-s + 810·9-s + 1.00e3·10-s − 4·11-s + 1.54e3·12-s − 220·13-s + 1.96e3·14-s + 3.60e3·15-s + 473·16-s − 192·17-s + 8.10e3·18-s + 988·19-s + 4.30e3·20-s + 7.05e3·21-s − 40·22-s + 4.53e3·23-s + 5.90e3·24-s + 6.25e3·25-s − 2.20e3·26-s + 1.45e4·27-s + 8.42e3·28-s + ⋯
L(s)  = 1  + 1.76·2-s + 2.30·3-s + 1.34·4-s + 1.78·5-s + 4.08·6-s + 1.51·7-s + 0.905·8-s + 10/3·9-s + 3.16·10-s − 0.00996·11-s + 3.10·12-s − 0.361·13-s + 2.67·14-s + 4.13·15-s + 0.461·16-s − 0.161·17-s + 5.89·18-s + 0.627·19-s + 2.40·20-s + 3.49·21-s − 0.0176·22-s + 1.78·23-s + 2.09·24-s + 2·25-s − 0.638·26-s + 3.84·27-s + 2.03·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(80426.5\)
Root analytic conductor: \(4.10369\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(93.23881103\)
\(L(\frac12)\) \(\approx\) \(93.23881103\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{2} T )^{4} \)
5$C_1$ \( ( 1 - p^{2} T )^{4} \)
7$C_1$ \( ( 1 - p^{2} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 5 p T + 57 T^{2} - 19 p^{4} T^{3} + 439 p^{2} T^{4} - 19 p^{9} T^{5} + 57 p^{10} T^{6} - 5 p^{16} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 4 T + 75436 T^{2} + 82299204 T^{3} + 2506473110 T^{4} + 82299204 p^{5} T^{5} + 75436 p^{10} T^{6} + 4 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 220 T + 783092 T^{2} + 25280932 p T^{3} + 303358372262 T^{4} + 25280932 p^{6} T^{5} + 783092 p^{10} T^{6} + 220 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 192 T + 4212332 T^{2} + 907467904 T^{3} + 7929537519078 T^{4} + 907467904 p^{5} T^{5} + 4212332 p^{10} T^{6} + 192 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 52 p T + 8052524 T^{2} - 6884029628 T^{3} + 28073224721910 T^{4} - 6884029628 p^{5} T^{5} + 8052524 p^{10} T^{6} - 52 p^{16} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 4536 T + 29564252 T^{2} - 86219324312 T^{3} + 297437560448742 T^{4} - 86219324312 p^{5} T^{5} + 29564252 p^{10} T^{6} - 4536 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 12080 T + 100432060 T^{2} - 575390682064 T^{3} + 2936700379628438 T^{4} - 575390682064 p^{5} T^{5} + 100432060 p^{10} T^{6} - 12080 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 6684 T + 64214380 T^{2} + 207292452204 T^{3} + 1796191229887142 T^{4} + 207292452204 p^{5} T^{5} + 64214380 p^{10} T^{6} + 6684 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 7048 T + 240896780 T^{2} - 1307184796952 T^{3} + 24204633999381270 T^{4} - 1307184796952 p^{5} T^{5} + 240896780 p^{10} T^{6} - 7048 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 8056 T + 292731612 T^{2} - 1937050789128 T^{3} + 47076987713739622 T^{4} - 1937050789128 p^{5} T^{5} + 292731612 p^{10} T^{6} - 8056 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 17760 T + 434579212 T^{2} - 4076426519904 T^{3} + 72032078566361942 T^{4} - 4076426519904 p^{5} T^{5} + 434579212 p^{10} T^{6} - 17760 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 1680 T + 396851772 T^{2} - 1946638393168 T^{3} + 87729300432430534 T^{4} - 1946638393168 p^{5} T^{5} + 396851772 p^{10} T^{6} - 1680 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 19276 T + 1123072724 T^{2} + 17111676111940 T^{3} + 670187875891482246 T^{4} + 17111676111940 p^{5} T^{5} + 1123072724 p^{10} T^{6} + 19276 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 14120 T + 1354378476 T^{2} + 3803023148456 T^{3} + 872580929408821846 T^{4} + 3803023148456 p^{5} T^{5} + 1354378476 p^{10} T^{6} + 14120 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 32128 T + 1133758684 T^{2} + 36178817844032 T^{3} + 1505934061573590230 T^{4} + 36178817844032 p^{5} T^{5} + 1133758684 p^{10} T^{6} + 32128 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 12184 T + 1764498124 T^{2} - 56903472180824 T^{3} + 3116658947683522550 T^{4} - 56903472180824 p^{5} T^{5} + 1764498124 p^{10} T^{6} - 12184 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 39484 T + 2633218924 T^{2} - 163955635530156 T^{3} + 6751668238329281030 T^{4} - 163955635530156 p^{5} T^{5} + 2633218924 p^{10} T^{6} - 39484 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 113956 T + 12404609348 T^{2} + 757787591323964 T^{3} + 42962825812874193942 T^{4} + 757787591323964 p^{5} T^{5} + 12404609348 p^{10} T^{6} + 113956 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 109080 T + 12803403516 T^{2} + 848181699443768 T^{3} + 57521542037568930246 T^{4} + 848181699443768 p^{5} T^{5} + 12803403516 p^{10} T^{6} + 109080 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 10392 T + 12080391180 T^{2} - 56173845472216 T^{3} + 65460167681838778678 T^{4} - 56173845472216 p^{5} T^{5} + 12080391180 p^{10} T^{6} - 10392 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 16472 T + 15900728124 T^{2} + 229895408604456 T^{3} + \)\(12\!\cdots\!30\)\( T^{4} + 229895408604456 p^{5} T^{5} + 15900728124 p^{10} T^{6} + 16472 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 7636 T + 15344120596 T^{2} + 527709666692948 T^{3} + \)\(12\!\cdots\!18\)\( T^{4} + 527709666692948 p^{5} T^{5} + 15344120596 p^{10} T^{6} - 7636 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.152419208053373275644706919250, −8.867628504234556041163925368873, −8.535478670641954114131776019683, −8.488713184826705511613557444684, −7.907215337527796819010727154333, −7.56086885117714953933338626150, −7.55085607318153694316801102761, −7.01048302420706093186578646870, −6.79629205191979657556577945479, −6.47683363763387084720520150683, −5.79181233472342064564780472908, −5.71524461511178113525465070024, −5.36999779669445391637240422464, −4.78471248580960261540309088822, −4.54711045145124528415412136829, −4.42230826415304829960012032261, −4.34950219158703444841636718717, −3.37845276970795415569822212133, −3.02411748715175443820972483734, −3.00560717033230689188678935493, −2.34479287896160114610672855056, −2.19885158350068726758424342644, −1.68155031181302594095921644573, −1.10076225275611103158401673652, −1.04036523988600999064765179133, 1.04036523988600999064765179133, 1.10076225275611103158401673652, 1.68155031181302594095921644573, 2.19885158350068726758424342644, 2.34479287896160114610672855056, 3.00560717033230689188678935493, 3.02411748715175443820972483734, 3.37845276970795415569822212133, 4.34950219158703444841636718717, 4.42230826415304829960012032261, 4.54711045145124528415412136829, 4.78471248580960261540309088822, 5.36999779669445391637240422464, 5.71524461511178113525465070024, 5.79181233472342064564780472908, 6.47683363763387084720520150683, 6.79629205191979657556577945479, 7.01048302420706093186578646870, 7.55085607318153694316801102761, 7.56086885117714953933338626150, 7.907215337527796819010727154333, 8.488713184826705511613557444684, 8.535478670641954114131776019683, 8.867628504234556041163925368873, 9.152419208053373275644706919250

Graph of the $Z$-function along the critical line