Properties

Label 6-9680e3-1.1-c1e3-0-7
Degree $6$
Conductor $907039232000$
Sign $1$
Analytic cond. $461803.$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 7-s + 3·15-s − 7·17-s + 3·19-s − 21-s + 4·23-s + 6·25-s + 27-s − 5·29-s + 17·31-s − 3·35-s + 37-s + 2·41-s + 16·43-s + 6·47-s − 12·49-s − 7·51-s + 53-s + 3·57-s + 4·59-s − 11·61-s + 16·67-s + 4·69-s − 71-s + 22·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 0.377·7-s + 0.774·15-s − 1.69·17-s + 0.688·19-s − 0.218·21-s + 0.834·23-s + 6/5·25-s + 0.192·27-s − 0.928·29-s + 3.05·31-s − 0.507·35-s + 0.164·37-s + 0.312·41-s + 2.43·43-s + 0.875·47-s − 1.71·49-s − 0.980·51-s + 0.137·53-s + 0.397·57-s + 0.520·59-s − 1.40·61-s + 1.95·67-s + 0.481·69-s − 0.118·71-s + 2.57·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 11^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 11^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 5^{3} \cdot 11^{6}\)
Sign: $1$
Analytic conductor: \(461803.\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 5^{3} \cdot 11^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(10.92144210\)
\(L(\frac12)\) \(\approx\) \(10.92144210\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{3} \)
11 \( 1 \)
good3$S_4\times C_2$ \( 1 - T + T^{2} - 2 T^{3} + p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + T + 13 T^{2} + 10 T^{3} + 13 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - T^{2} - 64 T^{3} - p T^{4} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 7 T + 59 T^{2} + 230 T^{3} + 59 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 3 T + 17 T^{2} - 130 T^{3} + 17 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 4 T + 49 T^{2} - 120 T^{3} + 49 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 5 T + 71 T^{2} + 226 T^{3} + 71 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 17 T + 165 T^{2} - 1070 T^{3} + 165 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - T + 87 T^{2} - 94 T^{3} + 87 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 2 T + 91 T^{2} - 132 T^{3} + 91 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 16 T + 189 T^{2} - 1360 T^{3} + 189 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 6 T + 113 T^{2} - 556 T^{3} + 113 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - T + 135 T^{2} - 126 T^{3} + 135 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 4 T + 81 T^{2} - 600 T^{3} + 81 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 11 T + 95 T^{2} + 6 p T^{3} + 95 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 16 T + 165 T^{2} - 1168 T^{3} + 165 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + T + 85 T^{2} + 654 T^{3} + 85 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 22 T + 355 T^{2} - 3388 T^{3} + 355 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{3} \)
83$S_4\times C_2$ \( 1 + 21 T^{2} - 880 T^{3} + 21 p T^{4} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 3 T + 83 T^{2} + 1138 T^{3} + 83 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.81536576017082901890951337774, −6.43364966222057861442194262641, −6.37546742156865966344056596767, −6.18264682903485965925015072763, −5.94311100845211582892545258324, −5.63778862520529089286875274799, −5.51064038249860586115086560871, −5.02041074488077072463101863985, −4.93426243357501218821942298246, −4.66605153796993040813196465347, −4.58978218514600644447283448560, −4.25326122194598661344793578469, −3.92739205104372921978307207270, −3.49091796461213655051491995745, −3.33206338406025818099414574435, −3.31262627352069103180232129545, −2.70940096289806897509148276314, −2.48867473817428016200642733849, −2.37912396688920701217631372703, −2.13366419772419433811967890920, −1.96725921779954477840261696818, −1.37158493718043754183518143793, −0.976010292333823414274707367195, −0.76643553671172750274623175089, −0.50923874372048305079146366620, 0.50923874372048305079146366620, 0.76643553671172750274623175089, 0.976010292333823414274707367195, 1.37158493718043754183518143793, 1.96725921779954477840261696818, 2.13366419772419433811967890920, 2.37912396688920701217631372703, 2.48867473817428016200642733849, 2.70940096289806897509148276314, 3.31262627352069103180232129545, 3.33206338406025818099414574435, 3.49091796461213655051491995745, 3.92739205104372921978307207270, 4.25326122194598661344793578469, 4.58978218514600644447283448560, 4.66605153796993040813196465347, 4.93426243357501218821942298246, 5.02041074488077072463101863985, 5.51064038249860586115086560871, 5.63778862520529089286875274799, 5.94311100845211582892545258324, 6.18264682903485965925015072763, 6.37546742156865966344056596767, 6.43364966222057861442194262641, 6.81536576017082901890951337774

Graph of the $Z$-function along the critical line