L(s) = 1 | + 3-s + 3·5-s − 7-s + 3·15-s − 7·17-s + 3·19-s − 21-s + 4·23-s + 6·25-s + 27-s − 5·29-s + 17·31-s − 3·35-s + 37-s + 2·41-s + 16·43-s + 6·47-s − 12·49-s − 7·51-s + 53-s + 3·57-s + 4·59-s − 11·61-s + 16·67-s + 4·69-s − 71-s + 22·73-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s − 0.377·7-s + 0.774·15-s − 1.69·17-s + 0.688·19-s − 0.218·21-s + 0.834·23-s + 6/5·25-s + 0.192·27-s − 0.928·29-s + 3.05·31-s − 0.507·35-s + 0.164·37-s + 0.312·41-s + 2.43·43-s + 0.875·47-s − 1.71·49-s − 0.980·51-s + 0.137·53-s + 0.397·57-s + 0.520·59-s − 1.40·61-s + 1.95·67-s + 0.481·69-s − 0.118·71-s + 2.57·73-s + ⋯ |
Λ(s)=(=((212⋅53⋅116)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((212⋅53⋅116)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅53⋅116
|
Sign: |
1
|
Analytic conductor: |
461803. |
Root analytic conductor: |
8.79176 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 212⋅53⋅116, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
10.92144210 |
L(21) |
≈ |
10.92144210 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)3 |
| 11 | | 1 |
good | 3 | S4×C2 | 1−T+T2−2T3+pT4−p2T5+p3T6 |
| 7 | S4×C2 | 1+T+13T2+10T3+13pT4+p2T5+p3T6 |
| 13 | S4×C2 | 1−T2−64T3−pT4+p3T6 |
| 17 | S4×C2 | 1+7T+59T2+230T3+59pT4+7p2T5+p3T6 |
| 19 | S4×C2 | 1−3T+17T2−130T3+17pT4−3p2T5+p3T6 |
| 23 | S4×C2 | 1−4T+49T2−120T3+49pT4−4p2T5+p3T6 |
| 29 | S4×C2 | 1+5T+71T2+226T3+71pT4+5p2T5+p3T6 |
| 31 | S4×C2 | 1−17T+165T2−1070T3+165pT4−17p2T5+p3T6 |
| 37 | S4×C2 | 1−T+87T2−94T3+87pT4−p2T5+p3T6 |
| 41 | S4×C2 | 1−2T+91T2−132T3+91pT4−2p2T5+p3T6 |
| 43 | S4×C2 | 1−16T+189T2−1360T3+189pT4−16p2T5+p3T6 |
| 47 | S4×C2 | 1−6T+113T2−556T3+113pT4−6p2T5+p3T6 |
| 53 | S4×C2 | 1−T+135T2−126T3+135pT4−p2T5+p3T6 |
| 59 | S4×C2 | 1−4T+81T2−600T3+81pT4−4p2T5+p3T6 |
| 61 | S4×C2 | 1+11T+95T2+6pT3+95pT4+11p2T5+p3T6 |
| 67 | S4×C2 | 1−16T+165T2−1168T3+165pT4−16p2T5+p3T6 |
| 71 | S4×C2 | 1+T+85T2+654T3+85pT4+p2T5+p3T6 |
| 73 | S4×C2 | 1−22T+355T2−3388T3+355pT4−22p2T5+p3T6 |
| 79 | C2 | (1−12T+pT2)3 |
| 83 | S4×C2 | 1+21T2−880T3+21pT4+p3T6 |
| 89 | S4×C2 | 1+3T+83T2+1138T3+83pT4+3p2T5+p3T6 |
| 97 | C2 | (1−6T+pT2)3 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.81536576017082901890951337774, −6.43364966222057861442194262641, −6.37546742156865966344056596767, −6.18264682903485965925015072763, −5.94311100845211582892545258324, −5.63778862520529089286875274799, −5.51064038249860586115086560871, −5.02041074488077072463101863985, −4.93426243357501218821942298246, −4.66605153796993040813196465347, −4.58978218514600644447283448560, −4.25326122194598661344793578469, −3.92739205104372921978307207270, −3.49091796461213655051491995745, −3.33206338406025818099414574435, −3.31262627352069103180232129545, −2.70940096289806897509148276314, −2.48867473817428016200642733849, −2.37912396688920701217631372703, −2.13366419772419433811967890920, −1.96725921779954477840261696818, −1.37158493718043754183518143793, −0.976010292333823414274707367195, −0.76643553671172750274623175089, −0.50923874372048305079146366620,
0.50923874372048305079146366620, 0.76643553671172750274623175089, 0.976010292333823414274707367195, 1.37158493718043754183518143793, 1.96725921779954477840261696818, 2.13366419772419433811967890920, 2.37912396688920701217631372703, 2.48867473817428016200642733849, 2.70940096289806897509148276314, 3.31262627352069103180232129545, 3.33206338406025818099414574435, 3.49091796461213655051491995745, 3.92739205104372921978307207270, 4.25326122194598661344793578469, 4.58978218514600644447283448560, 4.66605153796993040813196465347, 4.93426243357501218821942298246, 5.02041074488077072463101863985, 5.51064038249860586115086560871, 5.63778862520529089286875274799, 5.94311100845211582892545258324, 6.18264682903485965925015072763, 6.37546742156865966344056596767, 6.43364966222057861442194262641, 6.81536576017082901890951337774