L(s) = 1 | + 3·2-s + 3·3-s + 4·4-s + 9·6-s + 8·7-s + 4·8-s + 6·9-s + 12·12-s + 6·13-s + 24·14-s + 3·16-s + 4·17-s + 18·18-s + 2·19-s + 24·21-s − 12·23-s + 12·24-s + 18·26-s + 10·27-s + 32·28-s + 8·29-s + 8·31-s − 32-s + 12·34-s + 24·36-s − 4·37-s + 6·38-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 1.73·3-s + 2·4-s + 3.67·6-s + 3.02·7-s + 1.41·8-s + 2·9-s + 3.46·12-s + 1.66·13-s + 6.41·14-s + 3/4·16-s + 0.970·17-s + 4.24·18-s + 0.458·19-s + 5.23·21-s − 2.50·23-s + 2.44·24-s + 3.53·26-s + 1.92·27-s + 6.04·28-s + 1.48·29-s + 1.43·31-s − 0.176·32-s + 2.05·34-s + 4·36-s − 0.657·37-s + 0.973·38-s + ⋯ |
Λ(s)=(=((33⋅56⋅116)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((33⋅56⋅116)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅116
|
Sign: |
1
|
Analytic conductor: |
380514. |
Root analytic conductor: |
8.51259 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅116, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
104.0981210 |
L(21) |
≈ |
104.0981210 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−T)3 |
| 5 | | 1 |
| 11 | | 1 |
good | 2 | S4×C2 | 1−3T+5T2−7T3+5pT4−3p2T5+p3T6 |
| 7 | S4×C2 | 1−8T+37T2−116T3+37pT4−8p2T5+p3T6 |
| 13 | S4×C2 | 1−6T+11T2−8T3+11pT4−6p2T5+p3T6 |
| 17 | S4×C2 | 1−4T+23T2−20T3+23pT4−4p2T5+p3T6 |
| 19 | S4×C2 | 1−2T+5T2+108T3+5pT4−2p2T5+p3T6 |
| 23 | C2 | (1+4T+pT2)3 |
| 29 | S4×C2 | 1−8T+3pT2−432T3+3p2T4−8p2T5+p3T6 |
| 31 | S4×C2 | 1−8T+101T2−480T3+101pT4−8p2T5+p3T6 |
| 37 | S4×C2 | 1+4T+95T2+264T3+95pT4+4p2T5+p3T6 |
| 41 | S4×C2 | 1−8T+3pT2−624T3+3p2T4−8p2T5+p3T6 |
| 43 | S4×C2 | 1−8T+145T2−692T3+145pT4−8p2T5+p3T6 |
| 47 | S4×C2 | 1+8T+125T2+592T3+125pT4+8p2T5+p3T6 |
| 53 | S4×C2 | 1−8T+127T2−576T3+127pT4−8p2T5+p3T6 |
| 59 | S4×C2 | 1+8T+113T2+1024T3+113pT4+8p2T5+p3T6 |
| 61 | S4×C2 | 1+2T+131T2+204T3+131pT4+2p2T5+p3T6 |
| 67 | S4×C2 | 1+12T+185T2+1288T3+185pT4+12p2T5+p3T6 |
| 71 | S4×C2 | 1+12T+245T2+1688T3+245pT4+12p2T5+p3T6 |
| 73 | S4×C2 | 1−18T+279T2−2536T3+279pT4−18p2T5+p3T6 |
| 79 | S4×C2 | 1−6T+233T2−940T3+233pT4−6p2T5+p3T6 |
| 83 | S4×C2 | 1+2T+245T2+328T3+245pT4+2p2T5+p3T6 |
| 89 | S4×C2 | 1−2T+255T2−348T3+255pT4−2p2T5+p3T6 |
| 97 | S4×C2 | 1−8T+259T2−1424T3+259pT4−8p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.72176784957749855626729729711, −6.61325391178579816190892295001, −6.15729711952447827858920300835, −6.04263812970950156136323919279, −5.82211335118011540854835073926, −5.51720600073119788253420642123, −5.50010325320873716703442156154, −4.88869924655958038353473046937, −4.79002671290631610833740203557, −4.63578581259931773563150557616, −4.41398244738947921079902727578, −4.29159704524203784988612238903, −4.22852520169071384707905396936, −3.58088400067104101410860796764, −3.51000449289901905732841120458, −3.48285827296203539637603309202, −2.96850132261302279008297676182, −2.86039017852520544331053773583, −2.21355586031351909025284776293, −2.12674544853775588197824821184, −1.97671941444564389074796256942, −1.64638984761595203001268343530, −1.32750749544657828394095531713, −0.873204115582791448545432409592, −0.833837575694138690640980516308,
0.833837575694138690640980516308, 0.873204115582791448545432409592, 1.32750749544657828394095531713, 1.64638984761595203001268343530, 1.97671941444564389074796256942, 2.12674544853775588197824821184, 2.21355586031351909025284776293, 2.86039017852520544331053773583, 2.96850132261302279008297676182, 3.48285827296203539637603309202, 3.51000449289901905732841120458, 3.58088400067104101410860796764, 4.22852520169071384707905396936, 4.29159704524203784988612238903, 4.41398244738947921079902727578, 4.63578581259931773563150557616, 4.79002671290631610833740203557, 4.88869924655958038353473046937, 5.50010325320873716703442156154, 5.51720600073119788253420642123, 5.82211335118011540854835073926, 6.04263812970950156136323919279, 6.15729711952447827858920300835, 6.61325391178579816190892295001, 6.72176784957749855626729729711