L(s) = 1 | + 3·3-s + 2·5-s + 3·7-s + 9-s + 7·11-s + 2·13-s + 6·15-s + 7·17-s + 3·19-s + 9·21-s − 14·23-s − 6·25-s − 7·27-s + 3·29-s + 11·31-s + 21·33-s + 6·35-s + 6·39-s − 7·41-s − 4·43-s + 2·45-s − 8·47-s + 6·49-s + 21·51-s + 53-s + 14·55-s + 9·57-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.894·5-s + 1.13·7-s + 1/3·9-s + 2.11·11-s + 0.554·13-s + 1.54·15-s + 1.69·17-s + 0.688·19-s + 1.96·21-s − 2.91·23-s − 6/5·25-s − 1.34·27-s + 0.557·29-s + 1.97·31-s + 3.65·33-s + 1.01·35-s + 0.960·39-s − 1.09·41-s − 0.609·43-s + 0.298·45-s − 1.16·47-s + 6/7·49-s + 2.94·51-s + 0.137·53-s + 1.88·55-s + 1.19·57-s + ⋯ |
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅73⋅193
|
Sign: |
1
|
Analytic conductor: |
313997. |
Root analytic conductor: |
8.24431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 218⋅73⋅193, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
18.66560158 |
L(21) |
≈ |
18.66560158 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)3 |
| 19 | C1 | (1−T)3 |
good | 3 | S4×C2 | 1−pT+8T2−14T3+8pT4−p3T5+p3T6 |
| 5 | S4×C2 | 1−2T+2pT2−18T3+2p2T4−2p2T5+p3T6 |
| 11 | S4×C2 | 1−7T+4pT2−158T3+4p2T4−7p2T5+p3T6 |
| 13 | S4×C2 | 1−2T+34T2−50T3+34pT4−2p2T5+p3T6 |
| 17 | S4×C2 | 1−7T+40T2−132T3+40pT4−7p2T5+p3T6 |
| 23 | S4×C2 | 1+14T+122T2+700T3+122pT4+14p2T5+p3T6 |
| 29 | S4×C2 | 1−3T+14T2+104T3+14pT4−3p2T5+p3T6 |
| 31 | S4×C2 | 1−11T+118T2−698T3+118pT4−11p2T5+p3T6 |
| 37 | S4×C2 | 1+68T2−106T3+68pT4+p3T6 |
| 41 | S4×C2 | 1+7T−28T2−424T3−28pT4+7p2T5+p3T6 |
| 43 | S4×C2 | 1+4T+109T2+328T3+109pT4+4p2T5+p3T6 |
| 47 | S4×C2 | 1+8T+112T2+768T3+112pT4+8p2T5+p3T6 |
| 53 | S4×C2 | 1−T+128T2−104T3+128pT4−p2T5+p3T6 |
| 59 | S4×C2 | 1+10T+178T2+1056T3+178pT4+10p2T5+p3T6 |
| 61 | S4×C2 | 1−6T+134T2−650T3+134pT4−6p2T5+p3T6 |
| 67 | S4×C2 | 1+3T+122T2+214T3+122pT4+3p2T5+p3T6 |
| 71 | S4×C2 | 1+152T2+32T3+152pT4+p3T6 |
| 73 | S4×C2 | 1−T+118T2−244T3+118pT4−p2T5+p3T6 |
| 79 | S4×C2 | 1−4T+193T2−664T3+193pT4−4p2T5+p3T6 |
| 83 | S4×C2 | 1−31T+538T2−5934T3+538pT4−31p2T5+p3T6 |
| 89 | S4×C2 | 1+28T+371T2+3632T3+371pT4+28p2T5+p3T6 |
| 97 | S4×C2 | 1+30T+534T2+6302T3+534pT4+30p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.98641906647958439331812663765, −6.47564461825061192249005869197, −6.40408580878679048101142994072, −6.14320317469339879104189182849, −5.94484466760484790720959921545, −5.81191300851102184630777805351, −5.70275178498974691265615399924, −5.07878989057910058875472338922, −5.00528129767450521625682881655, −4.82218904940168473079462875510, −4.39176348779579402765392290694, −4.13092749297459335052364339505, −3.92716281520920824549684092588, −3.57225496050796564723710436144, −3.45596550103930812981658628031, −3.42389240255062165013585662218, −2.82885643283701257055206870020, −2.60571594550086436799369276668, −2.52028471541153330313171010601, −1.77652584675795969726433162758, −1.76490806364060081069254543422, −1.72078824840405871527472892168, −1.39395629877196249280075932145, −0.77583049646881503805110798565, −0.52730190583695110422846800207,
0.52730190583695110422846800207, 0.77583049646881503805110798565, 1.39395629877196249280075932145, 1.72078824840405871527472892168, 1.76490806364060081069254543422, 1.77652584675795969726433162758, 2.52028471541153330313171010601, 2.60571594550086436799369276668, 2.82885643283701257055206870020, 3.42389240255062165013585662218, 3.45596550103930812981658628031, 3.57225496050796564723710436144, 3.92716281520920824549684092588, 4.13092749297459335052364339505, 4.39176348779579402765392290694, 4.82218904940168473079462875510, 5.00528129767450521625682881655, 5.07878989057910058875472338922, 5.70275178498974691265615399924, 5.81191300851102184630777805351, 5.94484466760484790720959921545, 6.14320317469339879104189182849, 6.40408580878679048101142994072, 6.47564461825061192249005869197, 6.98641906647958439331812663765