L(s) = 1 | − 3-s − 2·5-s − 3·7-s + 9-s + 7·11-s + 2·15-s + 17-s − 3·19-s + 3·21-s + 16·23-s − 2·25-s + 5·27-s + 29-s − 5·31-s − 7·33-s + 6·35-s + 6·37-s + 41-s − 4·43-s − 2·45-s − 14·47-s + 6·49-s − 51-s − 31·53-s − 14·55-s + 3·57-s + 18·59-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s − 1.13·7-s + 1/3·9-s + 2.11·11-s + 0.516·15-s + 0.242·17-s − 0.688·19-s + 0.654·21-s + 3.33·23-s − 2/5·25-s + 0.962·27-s + 0.185·29-s − 0.898·31-s − 1.21·33-s + 1.01·35-s + 0.986·37-s + 0.156·41-s − 0.609·43-s − 0.298·45-s − 2.04·47-s + 6/7·49-s − 0.140·51-s − 4.25·53-s − 1.88·55-s + 0.397·57-s + 2.34·59-s + ⋯ |
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅73⋅193
|
Sign: |
1
|
Analytic conductor: |
313997. |
Root analytic conductor: |
8.24431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 218⋅73⋅193, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.284145954 |
L(21) |
≈ |
2.284145954 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1+T)3 |
| 19 | C1 | (1+T)3 |
good | 3 | S4×C2 | 1+T−2pT3+p2T5+p3T6 |
| 5 | S4×C2 | 1+2T+6T2+14T3+6pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1−7T+34T2−118T3+34pT4−7p2T5+p3T6 |
| 13 | D6 | 1−54T3+p3T6 |
| 17 | S4×C2 | 1−T+36T2−16T3+36pT4−p2T5+p3T6 |
| 23 | S4×C2 | 1−16T+144T2−832T3+144pT4−16p2T5+p3T6 |
| 29 | S4×C2 | 1−T+72T2−40T3+72pT4−p2T5+p3T6 |
| 31 | S4×C2 | 1+5T+86T2+302T3+86pT4+5p2T5+p3T6 |
| 37 | S4×C2 | 1−6T+30T2−282T3+30pT4−6p2T5+p3T6 |
| 41 | S4×C2 | 1−T+42T2+200T3+42pT4−p2T5+p3T6 |
| 43 | S4×C2 | 1+4T+93T2+296T3+93pT4+4p2T5+p3T6 |
| 47 | S4×C2 | 1+14T+150T2+1100T3+150pT4+14p2T5+p3T6 |
| 53 | S4×C2 | 1+31T+470T2+4284T3+470pT4+31p2T5+p3T6 |
| 59 | S4×C2 | 1−18T+246T2−2160T3+246pT4−18p2T5+p3T6 |
| 61 | S4×C2 | 1+26T+398T2+3734T3+398pT4+26p2T5+p3T6 |
| 67 | S4×C2 | 1+T+94T2+110T3+94pT4+p2T5+p3T6 |
| 71 | S4×C2 | 1−12T+168T2−1380T3+168pT4−12p2T5+p3T6 |
| 73 | S4×C2 | 1−19T+330T2−2960T3+330pT4−19p2T5+p3T6 |
| 79 | S4×C2 | 1+4T+201T2+584T3+201pT4+4p2T5+p3T6 |
| 83 | S4×C2 | 1+13T+4T2−1070T3+4pT4+13p2T5+p3T6 |
| 89 | S4×C2 | 1+12T+147T2+704T3+147pT4+12p2T5+p3T6 |
| 97 | S4×C2 | 1+8T+156T2+1906T3+156pT4+8p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.91642147420745210133188146587, −6.62184419204002041063340920303, −6.52336016123654829274922242743, −6.34052664001993887919436478307, −5.94184918207743366799289190590, −5.77540459115707175287224979171, −5.65637010065159159267056683458, −5.11382744227814027892088936851, −4.86180031944613324352861532458, −4.65117923035807252008061452378, −4.64520891481843036013958086628, −4.38123619603899161848870084130, −3.87311867729149724299568554032, −3.73640320085587360343548950637, −3.47452596270728101377169845472, −3.31485518232009150812517471510, −2.96045661514207416379855030556, −2.86258683528650375381443170712, −2.52825694833560734923918330967, −1.87072492040395193758747388314, −1.62713835083457126486192726010, −1.25016092033467334981864045882, −1.22135659841066034019150866158, −0.44431870555185554149840921430, −0.43498480492521483710492847745,
0.43498480492521483710492847745, 0.44431870555185554149840921430, 1.22135659841066034019150866158, 1.25016092033467334981864045882, 1.62713835083457126486192726010, 1.87072492040395193758747388314, 2.52825694833560734923918330967, 2.86258683528650375381443170712, 2.96045661514207416379855030556, 3.31485518232009150812517471510, 3.47452596270728101377169845472, 3.73640320085587360343548950637, 3.87311867729149724299568554032, 4.38123619603899161848870084130, 4.64520891481843036013958086628, 4.65117923035807252008061452378, 4.86180031944613324352861532458, 5.11382744227814027892088936851, 5.65637010065159159267056683458, 5.77540459115707175287224979171, 5.94184918207743366799289190590, 6.34052664001993887919436478307, 6.52336016123654829274922242743, 6.62184419204002041063340920303, 6.91642147420745210133188146587