L(s) = 1 | + 3-s − 2·5-s − 3·7-s − 9-s + 3·11-s − 8·13-s − 2·15-s + 9·17-s + 3·19-s − 3·21-s + 4·23-s − 2·25-s − 5·27-s − 11·29-s − 5·31-s + 3·33-s + 6·35-s − 4·37-s − 8·39-s + 11·41-s + 4·43-s + 2·45-s − 2·47-s + 6·49-s + 9·51-s − 9·53-s − 6·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.894·5-s − 1.13·7-s − 1/3·9-s + 0.904·11-s − 2.21·13-s − 0.516·15-s + 2.18·17-s + 0.688·19-s − 0.654·21-s + 0.834·23-s − 2/5·25-s − 0.962·27-s − 2.04·29-s − 0.898·31-s + 0.522·33-s + 1.01·35-s − 0.657·37-s − 1.28·39-s + 1.71·41-s + 0.609·43-s + 0.298·45-s − 0.291·47-s + 6/7·49-s + 1.26·51-s − 1.23·53-s − 0.809·55-s + ⋯ |
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((218⋅73⋅193)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅73⋅193
|
Sign: |
1
|
Analytic conductor: |
313997. |
Root analytic conductor: |
8.24431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 218⋅73⋅193, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.340653938 |
L(21) |
≈ |
1.340653938 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1+T)3 |
| 19 | C1 | (1−T)3 |
good | 3 | S4×C2 | 1−T+2T2+2T3+2pT4−p2T5+p3T6 |
| 5 | S4×C2 | 1+2T+6T2+6T3+6pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1−3T+26T2−46T3+26pT4−3p2T5+p3T6 |
| 13 | S4×C2 | 1+8T+50T2+192T3+50pT4+8p2T5+p3T6 |
| 17 | S4×C2 | 1−9T+4pT2−292T3+4p2T4−9p2T5+p3T6 |
| 23 | S4×C2 | 1−4T+64T2−180T3+64pT4−4p2T5+p3T6 |
| 29 | S4×C2 | 1+11T+102T2+636T3+102pT4+11p2T5+p3T6 |
| 31 | S4×C2 | 1+5T+76T2+314T3+76pT4+5p2T5+p3T6 |
| 37 | S4×C2 | 1+4T+92T2+246T3+92pT4+4p2T5+p3T6 |
| 41 | S4×C2 | 1−11T+110T2−622T3+110pT4−11p2T5+p3T6 |
| 43 | S4×C2 | 1−4T+37T2−376T3+37pT4−4p2T5+p3T6 |
| 47 | S4×C2 | 1+2T+66T2+372T3+66pT4+2p2T5+p3T6 |
| 53 | S4×C2 | 1+9T+120T2+632T3+120pT4+9p2T5+p3T6 |
| 59 | S4×C2 | 1−12T+132T2−1308T3+132pT4−12p2T5+p3T6 |
| 61 | S4×C2 | 1−2T+26T2−42T3+26pT4−2p2T5+p3T6 |
| 67 | S4×C2 | 1−9T+218T2−1192T3+218pT4−9p2T5+p3T6 |
| 71 | S4×C2 | 1+158T2−58T3+158pT4+p3T6 |
| 73 | S4×C2 | 1+21T+302T2+2764T3+302pT4+21p2T5+p3T6 |
| 79 | S4×C2 | 1−6T+89T2+68T3+89pT4−6p2T5+p3T6 |
| 83 | S4×C2 | 1−7T+204T2−1062T3+204pT4−7p2T5+p3T6 |
| 89 | S4×C2 | 1+18T+335T2+3268T3+335pT4+18p2T5+p3T6 |
| 97 | S4×C2 | 1−28T+330T2−2896T3+330pT4−28p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.19181693558475457057465620795, −6.61487667750844684262870826751, −6.46697120505320068380294690365, −6.21304288510182901975075719130, −5.83736391754173069462216679333, −5.66612198719148753506840354935, −5.60194634240205233720156755742, −5.17926863514407035360079750163, −5.07091069185580242922509838651, −4.85349783164951712195728069608, −4.35055237876135894059879165030, −4.20890690505100790948186631897, −3.72319369770100674091808217261, −3.71894719284193403835209244211, −3.62009514222440069080929156965, −3.24900645801641252767418413092, −2.95417738949078819218298199656, −2.71557733646255377679495739498, −2.54311832246423664398305855522, −1.97293460850486025101056358784, −1.96536593976643843346974860924, −1.34979862011024683108000362082, −1.10395185667699594294475763082, −0.52458235259035336005619217026, −0.24985435976138412993749454907,
0.24985435976138412993749454907, 0.52458235259035336005619217026, 1.10395185667699594294475763082, 1.34979862011024683108000362082, 1.96536593976643843346974860924, 1.97293460850486025101056358784, 2.54311832246423664398305855522, 2.71557733646255377679495739498, 2.95417738949078819218298199656, 3.24900645801641252767418413092, 3.62009514222440069080929156965, 3.71894719284193403835209244211, 3.72319369770100674091808217261, 4.20890690505100790948186631897, 4.35055237876135894059879165030, 4.85349783164951712195728069608, 5.07091069185580242922509838651, 5.17926863514407035360079750163, 5.60194634240205233720156755742, 5.66612198719148753506840354935, 5.83736391754173069462216679333, 6.21304288510182901975075719130, 6.46697120505320068380294690365, 6.61487667750844684262870826751, 7.19181693558475457057465620795