L(s) = 1 | + 7·2-s − 27·3-s − 11·4-s − 189·6-s + 172·7-s − 189·8-s + 486·9-s − 363·11-s + 297·12-s + 654·13-s + 1.20e3·14-s − 427·16-s + 2.36e3·17-s + 3.40e3·18-s − 2.87e3·19-s − 4.64e3·21-s − 2.54e3·22-s − 2.27e3·23-s + 5.10e3·24-s + 4.57e3·26-s − 7.29e3·27-s − 1.89e3·28-s − 7.73e3·29-s + 568·31-s − 1.30e3·32-s + 9.80e3·33-s + 1.65e4·34-s + ⋯ |
L(s) = 1 | + 1.23·2-s − 1.73·3-s − 0.343·4-s − 2.14·6-s + 1.32·7-s − 1.04·8-s + 2·9-s − 0.904·11-s + 0.595·12-s + 1.07·13-s + 1.64·14-s − 0.416·16-s + 1.98·17-s + 2.47·18-s − 1.82·19-s − 2.29·21-s − 1.11·22-s − 0.895·23-s + 1.80·24-s + 1.32·26-s − 1.92·27-s − 0.456·28-s − 1.70·29-s + 0.106·31-s − 0.225·32-s + 1.56·33-s + 2.45·34-s + ⋯ |
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s)3L(s)−Λ(6−s)
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s+5/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅113
|
Sign: |
−1
|
Analytic conductor: |
2.31655×106 |
Root analytic conductor: |
11.5028 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 33⋅56⋅113, ( :5/2,5/2,5/2), −1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+p2T)3 |
| 5 | | 1 |
| 11 | C1 | (1+p2T)3 |
good | 2 | S4×C2 | 1−7T+15p2T2−77p2T3+15p7T4−7p10T5+p15T6 |
| 7 | S4×C2 | 1−172T+53317T2−5399144T3+53317p5T4−172p10T5+p15T6 |
| 13 | S4×C2 | 1−654T+555091T2−167732852T3+555091p5T4−654p10T5+p15T6 |
| 17 | S4×C2 | 1−2366T+4754783T2−6580937060T3+4754783p5T4−2366p10T5+p15T6 |
| 19 | S4×C2 | 1+2872T+9249705T2+14234256272T3+9249705p5T4+2872p10T5+p15T6 |
| 23 | S4×C2 | 1+2272T+18049957T2+25539838016T3+18049957p5T4+2272p10T5+p15T6 |
| 29 | S4×C2 | 1+7738T+75886547T2+322651167772T3+75886547p5T4+7738p10T5+p15T6 |
| 31 | S4×C2 | 1−568T+83955741T2−32812503440T3+83955741p5T4−568p10T5+p15T6 |
| 37 | S4×C2 | 1−9126T+153307915T2−1135693394116T3+153307915p5T4−9126p10T5+p15T6 |
| 41 | S4×C2 | 1+8758T+117252903T2+906684659284T3+117252903p5T4+8758p10T5+p15T6 |
| 43 | S4×C2 | 1−14672T+370715025T2−3794906879008T3+370715025p5T4−14672p10T5+p15T6 |
| 47 | S4×C2 | 1−19392T+652921165T2−7386008220288T3+652921165p5T4−19392p10T5+p15T6 |
| 53 | S4×C2 | 1−4598T+900328507T2−4574622258916T3+900328507p5T4−4598p10T5+p15T6 |
| 59 | S4×C2 | 1+9348T+1646289553T2+7098388384024T3+1646289553p5T4+9348p10T5+p15T6 |
| 61 | S4×C2 | 1+60078T+49584271pT2+87982416745556T3+49584271p6T4+60078p10T5+p15T6 |
| 67 | S4×C2 | 1−38468T+3866400905T2−95393272971992T3+3866400905p5T4−38468p10T5+p15T6 |
| 71 | S4×C2 | 1+74032T+6098518645T2+250129423986848T3+6098518645p5T4+74032p10T5+p15T6 |
| 73 | S4×C2 | 1−44442T+6331091479T2−174512379795884T3+6331091479p5T4−44442p10T5+p15T6 |
| 79 | S4×C2 | 1+108116T+11158675133T2+8537056071080pT3+11158675133p5T4+108116p10T5+p15T6 |
| 83 | S4×C2 | 1−81892T+2009956905T2+94678226672552T3+2009956905p5T4−81892p10T5+p15T6 |
| 89 | S4×C2 | 1−167342T+25837929495T2−2027809825205668T3+25837929495p5T4−167342p10T5+p15T6 |
| 97 | S4×C2 | 1+159702T+28145564719T2+2389832506953716T3+28145564719p5T4+159702p10T5+p15T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.923843061495281321639171255843, −8.323033958376440858631661080611, −8.001767243415159885732918871340, −7.914330285723199381888454815096, −7.56837908225641648548646355406, −7.55712335077672776302365328732, −6.76116137485126518151913681885, −6.60856137316361275890159419583, −6.17957841290830233119713451007, −6.02916301198691018755960297134, −5.56116819804269304654440133871, −5.42747433102649607331012164044, −5.40474164098502051732765924007, −4.73376820302772111932277171051, −4.68436205643931953604344196178, −4.45973700874466101902621073428, −3.86024340195301388845383836803, −3.81257051325707501448787147813, −3.66114606219011617983742640275, −2.78456789897390155965773226999, −2.56557075570168019424297531847, −1.91340040158909911062276212887, −1.58627086240070032123947857490, −1.10079465515973933975113574052, −1.09325899895399695595104985822, 0, 0, 0,
1.09325899895399695595104985822, 1.10079465515973933975113574052, 1.58627086240070032123947857490, 1.91340040158909911062276212887, 2.56557075570168019424297531847, 2.78456789897390155965773226999, 3.66114606219011617983742640275, 3.81257051325707501448787147813, 3.86024340195301388845383836803, 4.45973700874466101902621073428, 4.68436205643931953604344196178, 4.73376820302772111932277171051, 5.40474164098502051732765924007, 5.42747433102649607331012164044, 5.56116819804269304654440133871, 6.02916301198691018755960297134, 6.17957841290830233119713451007, 6.60856137316361275890159419583, 6.76116137485126518151913681885, 7.55712335077672776302365328732, 7.56837908225641648548646355406, 7.914330285723199381888454815096, 8.001767243415159885732918871340, 8.323033958376440858631661080611, 8.923843061495281321639171255843