L(s) = 1 | − 2-s + 9·3-s − 14·4-s − 9·6-s + 16·7-s + 18·8-s + 54·9-s − 33·11-s − 126·12-s + 42·13-s − 16·14-s + 83·16-s + 34·17-s − 54·18-s − 280·19-s + 144·21-s + 33·22-s + 112·23-s + 162·24-s − 42·26-s + 270·27-s − 224·28-s − 290·29-s − 392·31-s − 143·32-s − 297·33-s − 34·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s + 1.73·3-s − 7/4·4-s − 0.612·6-s + 0.863·7-s + 0.795·8-s + 2·9-s − 0.904·11-s − 3.03·12-s + 0.896·13-s − 0.305·14-s + 1.29·16-s + 0.485·17-s − 0.707·18-s − 3.38·19-s + 1.49·21-s + 0.319·22-s + 1.01·23-s + 1.37·24-s − 0.316·26-s + 1.92·27-s − 1.51·28-s − 1.85·29-s − 2.27·31-s − 0.789·32-s − 1.56·33-s − 0.171·34-s + ⋯ |
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s)3L(s)−Λ(4−s)
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s+3/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅113
|
Sign: |
−1
|
Analytic conductor: |
115334. |
Root analytic conductor: |
6.97686 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 33⋅56⋅113, ( :3/2,3/2,3/2), −1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−pT)3 |
| 5 | | 1 |
| 11 | C1 | (1+pT)3 |
good | 2 | S4×C2 | 1+T+15T2+11T3+15p3T4+p6T5+p9T6 |
| 7 | S4×C2 | 1−16T+277T2−5168T3+277p3T4−16p6T5+p9T6 |
| 13 | S4×C2 | 1−42T+1363T2−47132T3+1363p3T4−42p6T5+p9T6 |
| 17 | S4×C2 | 1−2pT+10079T2−155020T3+10079p3T4−2p7T5+p9T6 |
| 19 | S4×C2 | 1+280T+39201T2+3743984T3+39201p3T4+280p6T5+p9T6 |
| 23 | S4×C2 | 1−112T+19477T2−809120T3+19477p3T4−112p6T5+p9T6 |
| 29 | S4×C2 | 1+10pT+46667T2+4894124T3+46667p3T4+10p7T5+p9T6 |
| 31 | S4×C2 | 1+392T+121533T2+23039344T3+121533p3T4+392p6T5+p9T6 |
| 37 | S4×C2 | 1+570T+212899T2+56704796T3+212899p3T4+570p6T5+p9T6 |
| 41 | S4×C2 | 1+662T+150855T2+22689620T3+150855p3T4+662p6T5+p9T6 |
| 43 | S4×C2 | 1−68T+11145T2+9678104T3+11145p3T4−68p6T5+p9T6 |
| 47 | S4×C2 | 1+264T+146893T2+68940144T3+146893p3T4+264p6T5+p9T6 |
| 53 | S4×C2 | 1−94T+388819T2−25584884T3+388819p3T4−94p6T5+p9T6 |
| 59 | S4×C2 | 1+612T+191353T2+89255576T3+191353p3T4+612p6T5+p9T6 |
| 61 | S4×C2 | 1+582T+700987T2+242850884T3+700987p3T4+582p6T5+p9T6 |
| 67 | S4×C2 | 1+940T+512801T2+170936200T3+512801p3T4+940p6T5+p9T6 |
| 71 | S4×C2 | 1+1616T+1744933T2+1196967136T3+1744933p3T4+1616p6T5+p9T6 |
| 73 | S4×C2 | 1+738T+1335919T2+586235356T3+1335919p3T4+738p6T5+p9T6 |
| 79 | S4×C2 | 1−124T+1293245T2−95402344T3+1293245p3T4−124p6T5+p9T6 |
| 83 | S4×C2 | 1−1232T+2008521T2−1393226768T3+2008521p3T4−1232p6T5+p9T6 |
| 89 | S4×C2 | 1−838T+1110375T2−349581812T3+1110375p3T4−838p6T5+p9T6 |
| 97 | S4×C2 | 1−90T+441679T2+759889556T3+441679p3T4−90p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.975257984627867981597137714799, −8.756886792663463848002055456392, −8.664874130697926529337598270123, −8.644008272762849038412990189364, −8.062074708593717934400554198884, −7.83612037750024537156086712475, −7.55847616218115568494835181138, −7.44909690622839603019137495634, −6.87360478448751635380286870537, −6.72604814050844483706955404452, −6.04175695660354099526665503266, −6.01966312603529477032849909912, −5.32961516232190930103421756989, −5.10611389301653612594103417886, −4.76564008235122752127719055300, −4.68472080083570909399073377723, −4.07271715208151433876052641457, −3.85092018567788053733613541436, −3.69672774747570427612935804381, −3.08737524024092746834732223996, −3.06091685741671221142367814818, −2.12551233059698608939943653504, −1.90538860750957338173778733004, −1.61551328094500872726920373329, −1.34100164728806702134706110119, 0, 0, 0,
1.34100164728806702134706110119, 1.61551328094500872726920373329, 1.90538860750957338173778733004, 2.12551233059698608939943653504, 3.06091685741671221142367814818, 3.08737524024092746834732223996, 3.69672774747570427612935804381, 3.85092018567788053733613541436, 4.07271715208151433876052641457, 4.68472080083570909399073377723, 4.76564008235122752127719055300, 5.10611389301653612594103417886, 5.32961516232190930103421756989, 6.01966312603529477032849909912, 6.04175695660354099526665503266, 6.72604814050844483706955404452, 6.87360478448751635380286870537, 7.44909690622839603019137495634, 7.55847616218115568494835181138, 7.83612037750024537156086712475, 8.062074708593717934400554198884, 8.644008272762849038412990189364, 8.664874130697926529337598270123, 8.756886792663463848002055456392, 8.975257984627867981597137714799