L(s) = 1 | + 2-s − 9·3-s − 8·4-s − 9·6-s + 16·7-s − 12·8-s + 54·9-s + 33·11-s + 72·12-s + 45·13-s + 16·14-s − 7·16-s − 58·17-s + 54·18-s − 169·19-s − 144·21-s + 33·22-s + 155·23-s + 108·24-s + 45·26-s − 270·27-s − 128·28-s − 277·29-s − 173·31-s + 53·32-s − 297·33-s − 58·34-s + ⋯ |
L(s) = 1 | + 0.353·2-s − 1.73·3-s − 4-s − 0.612·6-s + 0.863·7-s − 0.530·8-s + 2·9-s + 0.904·11-s + 1.73·12-s + 0.960·13-s + 0.305·14-s − 0.109·16-s − 0.827·17-s + 0.707·18-s − 2.04·19-s − 1.49·21-s + 0.319·22-s + 1.40·23-s + 0.918·24-s + 0.339·26-s − 1.92·27-s − 0.863·28-s − 1.77·29-s − 1.00·31-s + 0.292·32-s − 1.56·33-s − 0.292·34-s + ⋯ |
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s)3L(s)−Λ(4−s)
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s+3/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅113
|
Sign: |
−1
|
Analytic conductor: |
115334. |
Root analytic conductor: |
6.97686 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 33⋅56⋅113, ( :3/2,3/2,3/2), −1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)3 |
| 5 | | 1 |
| 11 | C1 | (1−pT)3 |
good | 2 | S4×C2 | 1−T+9T2−5T3+9p3T4−p6T5+p9T6 |
| 7 | S4×C2 | 1−16T+856T2−11150T3+856p3T4−16p6T5+p9T6 |
| 13 | S4×C2 | 1−45T+6871T2−192794T3+6871p3T4−45p6T5+p9T6 |
| 17 | S4×C2 | 1+58T+15434T2+572224T3+15434p3T4+58p6T5+p9T6 |
| 19 | S4×C2 | 1+169T+28098T2+2360147T3+28098p3T4+169p6T5+p9T6 |
| 23 | S4×C2 | 1−155T+41944T2−3812131T3+41944p3T4−155p6T5+p9T6 |
| 29 | S4×C2 | 1+277T+68543T2+12078682T3+68543p3T4+277p6T5+p9T6 |
| 31 | S4×C2 | 1+173T+42261T2+6587230T3+42261p3T4+173p6T5+p9T6 |
| 37 | S4×C2 | 1−60T+3724T2+9069062T3+3724p3T4−60p6T5+p9T6 |
| 41 | S4×C2 | 1−44T+133902T2−3107666T3+133902p3T4−44p6T5+p9T6 |
| 43 | S4×C2 | 1+109T+228873T2+16964786T3+228873p3T4+109p6T5+p9T6 |
| 47 | S4×C2 | 1−270T+208054T2−52560216T3+208054p3T4−270p6T5+p9T6 |
| 53 | S4×C2 | 1+148T+385579T2+33949544T3+385579p3T4+148p6T5+p9T6 |
| 59 | S4×C2 | 1+684T+535726T2+196887298T3+535726p3T4+684p6T5+p9T6 |
| 61 | S4×C2 | 1+1038T+631795T2+333327140T3+631795p3T4+1038p6T5+p9T6 |
| 67 | S4×C2 | 1−314T+854861T2−187279700T3+854861p3T4−314p6T5+p9T6 |
| 71 | S4×C2 | 1+1459T+1463380T2+997438583T3+1463380p3T4+1459p6T5+p9T6 |
| 73 | S4×C2 | 1+1170T+1393615T2+839920876T3+1393615p3T4+1170p6T5+p9T6 |
| 79 | S4×C2 | 1+506T+1295660T2+507308816T3+1295660p3T4+506p6T5+p9T6 |
| 83 | S4×C2 | 1+347T+1599297T2+390027914T3+1599297p3T4+347p6T5+p9T6 |
| 89 | S4×C2 | 1+607T+1367067T2+593095898T3+1367067p3T4+607p6T5+p9T6 |
| 97 | S4×C2 | 1−1263T+3146554T2−2315882599T3+3146554p3T4−1263p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.263293876261939526661978520545, −8.702915205585140090904192747814, −8.664123869522520366132567728921, −8.622194468202238909872669325819, −7.80966644406917050810989327776, −7.73926583350674272645103976609, −7.21397965371771272436779538667, −7.17278476585545262622482414384, −6.55932097755422708933437199250, −6.47012140906186325521478136931, −6.02987606153651054039243844245, −5.95008204989237871528680858803, −5.68899766698085835265853581391, −4.98944415978559613841897480702, −4.94185744590564265955608826780, −4.73523686464525354459439630888, −4.22345054335914501648876979701, −4.10040012031390303175985092269, −3.96320387692851659190594900196, −3.23054795752020912331568928382, −2.97029458858689015338525211301, −2.13242561146774600131448802271, −1.77524093157596250946077326926, −1.26226370906427648111550413283, −1.24704046627505110969373102320, 0, 0, 0,
1.24704046627505110969373102320, 1.26226370906427648111550413283, 1.77524093157596250946077326926, 2.13242561146774600131448802271, 2.97029458858689015338525211301, 3.23054795752020912331568928382, 3.96320387692851659190594900196, 4.10040012031390303175985092269, 4.22345054335914501648876979701, 4.73523686464525354459439630888, 4.94185744590564265955608826780, 4.98944415978559613841897480702, 5.68899766698085835265853581391, 5.95008204989237871528680858803, 6.02987606153651054039243844245, 6.47012140906186325521478136931, 6.55932097755422708933437199250, 7.17278476585545262622482414384, 7.21397965371771272436779538667, 7.73926583350674272645103976609, 7.80966644406917050810989327776, 8.622194468202238909872669325819, 8.664123869522520366132567728921, 8.702915205585140090904192747814, 9.263293876261939526661978520545