Properties

Label 6-825e3-1.1-c3e3-0-2
Degree 66
Conductor 561515625561515625
Sign 1-1
Analytic cond. 115334.115334.
Root an. cond. 6.976866.97686
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 33

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 9·3-s + 5·4-s − 18·6-s − 10·7-s − 4·8-s + 54·9-s + 33·11-s − 45·12-s − 114·13-s − 20·14-s − 27·16-s + 104·17-s + 108·18-s − 58·19-s + 90·21-s + 66·22-s − 120·23-s + 36·24-s − 228·26-s − 270·27-s − 50·28-s − 220·29-s + 248·31-s + 6·32-s − 297·33-s + 208·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 5/8·4-s − 1.22·6-s − 0.539·7-s − 0.176·8-s + 2·9-s + 0.904·11-s − 1.08·12-s − 2.43·13-s − 0.381·14-s − 0.421·16-s + 1.48·17-s + 1.41·18-s − 0.700·19-s + 0.935·21-s + 0.639·22-s − 1.08·23-s + 0.306·24-s − 1.71·26-s − 1.92·27-s − 0.337·28-s − 1.40·29-s + 1.43·31-s + 0.0331·32-s − 1.56·33-s + 1.04·34-s + ⋯

Functional equation

Λ(s)=((3356113)s/2ΓC(s)3L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(4-s)\end{aligned}
Λ(s)=((3356113)s/2ΓC(s+3/2)3L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}

Invariants

Degree: 66
Conductor: 33561133^{3} \cdot 5^{6} \cdot 11^{3}
Sign: 1-1
Analytic conductor: 115334.115334.
Root analytic conductor: 6.976866.97686
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 33
Selberg data: (6, 3356113, ( :3/2,3/2,3/2), 1)(6,\ 3^{3} \cdot 5^{6} \cdot 11^{3} ,\ ( \ : 3/2, 3/2, 3/2 ),\ -1 )

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 (1+pT)3 ( 1 + p T )^{3}
5 1 1
11C1C_1 (1pT)3 ( 1 - p T )^{3}
good2S4×C2S_4\times C_2 1pTT2+p4T3p3T4p7T5+p9T6 1 - p T - T^{2} + p^{4} T^{3} - p^{3} T^{4} - p^{7} T^{5} + p^{9} T^{6}
7S4×C2S_4\times C_2 1+10T+425T2+3412T3+425p3T4+10p6T5+p9T6 1 + 10 T + 425 T^{2} + 3412 T^{3} + 425 p^{3} T^{4} + 10 p^{6} T^{5} + p^{9} T^{6}
13S4×C2S_4\times C_2 1+114T+10303T2+538132T3+10303p3T4+114p6T5+p9T6 1 + 114 T + 10303 T^{2} + 538132 T^{3} + 10303 p^{3} T^{4} + 114 p^{6} T^{5} + p^{9} T^{6}
17S4×C2S_4\times C_2 1104T+17531T21030352T3+17531p3T4104p6T5+p9T6 1 - 104 T + 17531 T^{2} - 1030352 T^{3} + 17531 p^{3} T^{4} - 104 p^{6} T^{5} + p^{9} T^{6}
19S4×C2S_4\times C_2 1+58T+9081T2+861164T3+9081p3T4+58p6T5+p9T6 1 + 58 T + 9081 T^{2} + 861164 T^{3} + 9081 p^{3} T^{4} + 58 p^{6} T^{5} + p^{9} T^{6}
23S4×C2S_4\times C_2 1+120T+25765T2+2771856T3+25765p3T4+120p6T5+p9T6 1 + 120 T + 25765 T^{2} + 2771856 T^{3} + 25765 p^{3} T^{4} + 120 p^{6} T^{5} + p^{9} T^{6}
29S4×C2S_4\times C_2 1+220T+58859T2+10101400T3+58859p3T4+220p6T5+p9T6 1 + 220 T + 58859 T^{2} + 10101400 T^{3} + 58859 p^{3} T^{4} + 220 p^{6} T^{5} + p^{9} T^{6}
31S4×C2S_4\times C_2 18pT+50781T25187088T3+50781p3T48p7T5+p9T6 1 - 8 p T + 50781 T^{2} - 5187088 T^{3} + 50781 p^{3} T^{4} - 8 p^{7} T^{5} + p^{9} T^{6}
37S4×C2S_4\times C_2 1+838T+375507T2+103501764T3+375507p3T4+838p6T5+p9T6 1 + 838 T + 375507 T^{2} + 103501764 T^{3} + 375507 p^{3} T^{4} + 838 p^{6} T^{5} + p^{9} T^{6}
41S4×C2S_4\times C_2 1156T+100167T224516984T3+100167p3T4156p6T5+p9T6 1 - 156 T + 100167 T^{2} - 24516984 T^{3} + 100167 p^{3} T^{4} - 156 p^{6} T^{5} + p^{9} T^{6}
43S4×C2S_4\times C_2 1+122T+193581T2+17954308T3+193581p3T4+122p6T5+p9T6 1 + 122 T + 193581 T^{2} + 17954308 T^{3} + 193581 p^{3} T^{4} + 122 p^{6} T^{5} + p^{9} T^{6}
47S4×C2S_4\times C_2 1+504T+393661T2+109025808T3+393661p3T4+504p6T5+p9T6 1 + 504 T + 393661 T^{2} + 109025808 T^{3} + 393661 p^{3} T^{4} + 504 p^{6} T^{5} + p^{9} T^{6}
53S4×C2S_4\times C_2 1+282T+224563T2+87620892T3+224563p3T4+282p6T5+p9T6 1 + 282 T + 224563 T^{2} + 87620892 T^{3} + 224563 p^{3} T^{4} + 282 p^{6} T^{5} + p^{9} T^{6}
59S4×C2S_4\times C_2 1548T+11419pT2226302104T3+11419p4T4548p6T5+p9T6 1 - 548 T + 11419 p T^{2} - 226302104 T^{3} + 11419 p^{4} T^{4} - 548 p^{6} T^{5} + p^{9} T^{6}
61S4×C2S_4\times C_2 1414T389T2+154404524T3389p3T4414p6T5+p9T6 1 - 414 T - 389 T^{2} + 154404524 T^{3} - 389 p^{3} T^{4} - 414 p^{6} T^{5} + p^{9} T^{6}
67S4×C2S_4\times C_2 1428T+695537T2249317576T3+695537p3T4428p6T5+p9T6 1 - 428 T + 695537 T^{2} - 249317576 T^{3} + 695537 p^{3} T^{4} - 428 p^{6} T^{5} + p^{9} T^{6}
71S4×C2S_4\times C_2 1+912T+1171621T2+649961952T3+1171621p3T4+912p6T5+p9T6 1 + 912 T + 1171621 T^{2} + 649961952 T^{3} + 1171621 p^{3} T^{4} + 912 p^{6} T^{5} + p^{9} T^{6}
73S4×C2S_4\times C_2 1+618T+1066507T2+454366420T3+1066507p3T4+618p6T5+p9T6 1 + 618 T + 1066507 T^{2} + 454366420 T^{3} + 1066507 p^{3} T^{4} + 618 p^{6} T^{5} + p^{9} T^{6}
79S4×C2S_4\times C_2 1+542T+1317893T2+445950836T3+1317893p3T4+542p6T5+p9T6 1 + 542 T + 1317893 T^{2} + 445950836 T^{3} + 1317893 p^{3} T^{4} + 542 p^{6} T^{5} + p^{9} T^{6}
83S4×C2S_4\times C_2 1+624021T2+434328048T3+624021p3T4+p9T6 1 + 624021 T^{2} + 434328048 T^{3} + 624021 p^{3} T^{4} + p^{9} T^{6}
89S4×C2S_4\times C_2 1790T3625T2+827778380T33625p3T4790p6T5+p9T6 1 - 790 T - 3625 T^{2} + 827778380 T^{3} - 3625 p^{3} T^{4} - 790 p^{6} T^{5} + p^{9} T^{6}
97S4×C2S_4\times C_2 1+2074T+3705231T2+3687692268T3+3705231p3T4+2074p6T5+p9T6 1 + 2074 T + 3705231 T^{2} + 3687692268 T^{3} + 3705231 p^{3} T^{4} + 2074 p^{6} T^{5} + p^{9} T^{6}
show more
show less
   L(s)=p j=16(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.455059253445627846431972477339, −8.789070329456716328700463922895, −8.507383788613095679588096596369, −8.400916356948033273541867174937, −7.66971650226535703084286455320, −7.59864198458999920060838161953, −7.22476365326484019209834724176, −7.04021622172011983038074682840, −6.67428184122129793160850072834, −6.42590762522689710887739135138, −6.19632369292971837073748416110, −5.94190570289524022226308542413, −5.48066244628059150307027467943, −5.25841283615790482793916750187, −4.95270927244098311351284433210, −4.86201891524306016678154184888, −4.27893732612711307807493969845, −3.98717575804290234756498577318, −3.65529333290895452112174093378, −3.17526088588212173964864198726, −2.96090904958045158740593924008, −2.24488153647382894389430809733, −2.01897951929802681699068491839, −1.46064607255351147116592512346, −1.09068984393183498145687599081, 0, 0, 0, 1.09068984393183498145687599081, 1.46064607255351147116592512346, 2.01897951929802681699068491839, 2.24488153647382894389430809733, 2.96090904958045158740593924008, 3.17526088588212173964864198726, 3.65529333290895452112174093378, 3.98717575804290234756498577318, 4.27893732612711307807493969845, 4.86201891524306016678154184888, 4.95270927244098311351284433210, 5.25841283615790482793916750187, 5.48066244628059150307027467943, 5.94190570289524022226308542413, 6.19632369292971837073748416110, 6.42590762522689710887739135138, 6.67428184122129793160850072834, 7.04021622172011983038074682840, 7.22476365326484019209834724176, 7.59864198458999920060838161953, 7.66971650226535703084286455320, 8.400916356948033273541867174937, 8.507383788613095679588096596369, 8.789070329456716328700463922895, 9.455059253445627846431972477339

Graph of the ZZ-function along the critical line