L(s) = 1 | + 4·2-s + 9·3-s + 7·4-s + 36·6-s + 4·7-s + 12·8-s + 54·9-s + 33·11-s + 63·12-s + 16·14-s − 7·16-s + 218·17-s + 216·18-s + 146·19-s + 36·21-s + 132·22-s + 200·23-s + 108·24-s + 270·27-s + 28·28-s + 68·29-s − 68·31-s − 28·32-s + 297·33-s + 872·34-s + 378·36-s + 390·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.73·3-s + 7/8·4-s + 2.44·6-s + 0.215·7-s + 0.530·8-s + 2·9-s + 0.904·11-s + 1.51·12-s + 0.305·14-s − 0.109·16-s + 3.11·17-s + 2.82·18-s + 1.76·19-s + 0.374·21-s + 1.27·22-s + 1.81·23-s + 0.918·24-s + 1.92·27-s + 0.188·28-s + 0.435·29-s − 0.393·31-s − 0.154·32-s + 1.56·33-s + 4.39·34-s + 7/4·36-s + 1.73·37-s + ⋯ |
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s)3L(s)Λ(4−s)
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s+3/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅113
|
Sign: |
1
|
Analytic conductor: |
115334. |
Root analytic conductor: |
6.97686 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅113, ( :3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
45.34513682 |
L(21) |
≈ |
45.34513682 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−pT)3 |
| 5 | | 1 |
| 11 | C1 | (1−pT)3 |
good | 2 | S4×C2 | 1−p2T+9T2−5p2T3+9p3T4−p8T5+p9T6 |
| 7 | S4×C2 | 1−4T+601T2+1000T3+601p3T4−4p6T5+p9T6 |
| 13 | S4×C2 | 1+3031T2+34144T3+3031p3T4+p9T6 |
| 17 | S4×C2 | 1−218T+24419T2−1906964T3+24419p3T4−218p6T5+p9T6 |
| 19 | S4×C2 | 1−146T+25953T2−2033788T3+25953p3T4−146p6T5+p9T6 |
| 23 | S4×C2 | 1−200T+33829T2−4868464T3+33829p3T4−200p6T5+p9T6 |
| 29 | S4×C2 | 1−68T+18803T2−153848T3+18803p3T4−68p6T5+p9T6 |
| 31 | S4×C2 | 1+68T+66141T2+2239480T3+66141p3T4+68p6T5+p9T6 |
| 37 | S4×C2 | 1−390T+188419T2−40128292T3+188419p3T4−390p6T5+p9T6 |
| 41 | S4×C2 | 1+196T+4407pT2+22652824T3+4407p4T4+196p6T5+p9T6 |
| 43 | S4×C2 | 1−524T+209853T2−52049416T3+209853p3T4−524p6T5+p9T6 |
| 47 | S4×C2 | 1−60T+175549T2+8508216T3+175549p3T4−60p6T5+p9T6 |
| 53 | S4×C2 | 1−158T+185779T2−86620084T3+185779p3T4−158p6T5+p9T6 |
| 59 | S4×C2 | 1+1044T+680281T2+344604088T3+680281p3T4+1044p6T5+p9T6 |
| 61 | S4×C2 | 1−642T+620395T2−268686220T3+620395p3T4−642p6T5+p9T6 |
| 67 | S4×C2 | 1−236T+440081T2−229497800T3+440081p3T4−236p6T5+p9T6 |
| 71 | S4×C2 | 1+544T+944005T2+395960768T3+944005p3T4+544p6T5+p9T6 |
| 73 | S4×C2 | 1+900T+867475T2+705839944T3+867475p3T4+900p6T5+p9T6 |
| 79 | S4×C2 | 1+1586T+2041325T2+1549224716T3+2041325p3T4+1586p6T5+p9T6 |
| 83 | S4×C2 | 1−1582T+1407717T2−884488684T3+1407717p3T4−1582p6T5+p9T6 |
| 89 | S4×C2 | 1+2122T+3521847T2+3285333068T3+3521847p3T4+2122p6T5+p9T6 |
| 97 | S4×C2 | 1+618T+1446319T2+1351607564T3+1446319p3T4+618p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.824538265957090862984442657588, −8.274669889890678787790145893236, −8.141253089791682904017279604648, −7.70231136854552248755973304148, −7.60649173355699630157614715211, −7.21641676367675934544609925841, −7.19538017647700608216589101276, −6.74517118727960106577098322585, −6.14842024987554433132806232754, −6.08708190831412417499210704726, −5.48565476795241888890576898314, −5.45186028111385934401011142552, −4.95279547076424105681938167816, −4.67588187526523506948114370755, −4.31951304257228794079168632437, −4.12390094827828533918595865420, −3.51096882456687860401636107810, −3.35697234964986496513408637015, −3.17039257360102443364282472464, −2.67814348647968432391518070514, −2.66408071374131149618080691913, −1.65470999538928771380172920643, −1.50455861492090021604115178052, −0.978278863960150269743198770832, −0.812636248968871468148556731499,
0.812636248968871468148556731499, 0.978278863960150269743198770832, 1.50455861492090021604115178052, 1.65470999538928771380172920643, 2.66408071374131149618080691913, 2.67814348647968432391518070514, 3.17039257360102443364282472464, 3.35697234964986496513408637015, 3.51096882456687860401636107810, 4.12390094827828533918595865420, 4.31951304257228794079168632437, 4.67588187526523506948114370755, 4.95279547076424105681938167816, 5.45186028111385934401011142552, 5.48565476795241888890576898314, 6.08708190831412417499210704726, 6.14842024987554433132806232754, 6.74517118727960106577098322585, 7.19538017647700608216589101276, 7.21641676367675934544609925841, 7.60649173355699630157614715211, 7.70231136854552248755973304148, 8.141253089791682904017279604648, 8.274669889890678787790145893236, 8.824538265957090862984442657588