L(s) = 1 | + 2-s + 3·3-s − 2·4-s + 3·6-s + 4·7-s − 2·8-s + 6·9-s + 3·11-s − 6·12-s + 2·13-s + 4·14-s + 16-s + 6·18-s − 6·19-s + 12·21-s + 3·22-s + 12·23-s − 6·24-s + 2·26-s + 10·27-s − 8·28-s + 8·29-s − 8·31-s − 32-s + 9·33-s − 12·36-s + 4·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.73·3-s − 4-s + 1.22·6-s + 1.51·7-s − 0.707·8-s + 2·9-s + 0.904·11-s − 1.73·12-s + 0.554·13-s + 1.06·14-s + 1/4·16-s + 1.41·18-s − 1.37·19-s + 2.61·21-s + 0.639·22-s + 2.50·23-s − 1.22·24-s + 0.392·26-s + 1.92·27-s − 1.51·28-s + 1.48·29-s − 1.43·31-s − 0.176·32-s + 1.56·33-s − 2·36-s + 0.657·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(8.887783193\) |
\(L(\frac12)\) |
\(\approx\) |
\(8.887783193\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_1$ | \( ( 1 - T )^{3} \) |
| 5 | | \( 1 \) |
| 11 | $C_1$ | \( ( 1 - T )^{3} \) |
good | 2 | $S_4\times C_2$ | \( 1 - T + 3 T^{2} - 3 T^{3} + 3 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \) |
| 7 | $S_4\times C_2$ | \( 1 - 4 T + 3 p T^{2} - 52 T^{3} + 3 p^{2} T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \) |
| 13 | $S_4\times C_2$ | \( 1 - 2 T + 35 T^{2} - 48 T^{3} + 35 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) |
| 17 | $S_4\times C_2$ | \( 1 + 23 T^{2} + 52 T^{3} + 23 p T^{4} + p^{3} T^{6} \) |
| 19 | $S_4\times C_2$ | \( 1 + 6 T + 53 T^{2} + 188 T^{3} + 53 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{3} \) |
| 29 | $S_4\times C_2$ | \( 1 - 8 T + 71 T^{2} - 304 T^{3} + 71 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \) |
| 31 | $S_4\times C_2$ | \( 1 + 8 T + 101 T^{2} + 480 T^{3} + 101 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \) |
| 37 | $S_4\times C_2$ | \( 1 - 4 T + 95 T^{2} - 264 T^{3} + 95 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \) |
| 41 | $S_4\times C_2$ | \( 1 - 8 T + 11 T^{2} + 272 T^{3} + 11 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \) |
| 43 | $S_4\times C_2$ | \( 1 - 12 T + 3 p T^{2} - 884 T^{3} + 3 p^{2} T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \) |
| 47 | $S_4\times C_2$ | \( 1 - 16 T + 189 T^{2} - 1536 T^{3} + 189 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \) |
| 53 | $S_4\times C_2$ | \( 1 - 16 T + 191 T^{2} - 1712 T^{3} + 191 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \) |
| 59 | $S_4\times C_2$ | \( 1 - 8 T + 113 T^{2} - 1024 T^{3} + 113 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \) |
| 61 | $S_4\times C_2$ | \( 1 + 22 T + 291 T^{2} + 2692 T^{3} + 291 p T^{4} + 22 p^{2} T^{5} + p^{3} T^{6} \) |
| 67 | $S_4\times C_2$ | \( 1 - 12 T + 185 T^{2} - 1544 T^{3} + 185 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \) |
| 71 | $S_4\times C_2$ | \( 1 + 12 T + 117 T^{2} + 760 T^{3} + 117 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \) |
| 73 | $S_4\times C_2$ | \( 1 + 10 T + 175 T^{2} + 1072 T^{3} + 175 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) |
| 79 | $S_4\times C_2$ | \( 1 + 10 T + 25 T^{2} - 140 T^{3} + 25 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) |
| 83 | $S_4\times C_2$ | \( 1 + 10 T + 189 T^{2} + 1056 T^{3} + 189 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) |
| 89 | $S_4\times C_2$ | \( 1 - 18 T + 255 T^{2} - 2684 T^{3} + 255 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \) |
| 97 | $S_4\times C_2$ | \( 1 - 16 T + 131 T^{2} - 672 T^{3} + 131 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.104203974436054120229060692702, −8.765401354852331276024806660120, −8.614624849082227082319612573810, −8.567757934604622706684121475401, −7.87795856184446085183920192508, −7.79470942502315420280141410663, −7.41889197249961132116921462587, −7.26608016874994634906267709187, −6.74837658191249750479556754827, −6.66843397542123878391877571256, −5.97651217865648722128749755082, −5.73901189515565344498359566074, −5.52329144866696438507384362168, −4.73497171417031631695587691727, −4.70395705559365580448502452741, −4.59649657740377297783744434237, −4.16173390288034934150778132376, −3.80115792904191761314367007499, −3.74425489410673704852611651654, −2.96594741682823080045916528160, −2.79104211969081013802893288998, −2.29615279519136901163764750232, −1.87826704779462494268479947443, −1.10772739208189699857074096964, −1.05530810322569037039931007084,
1.05530810322569037039931007084, 1.10772739208189699857074096964, 1.87826704779462494268479947443, 2.29615279519136901163764750232, 2.79104211969081013802893288998, 2.96594741682823080045916528160, 3.74425489410673704852611651654, 3.80115792904191761314367007499, 4.16173390288034934150778132376, 4.59649657740377297783744434237, 4.70395705559365580448502452741, 4.73497171417031631695587691727, 5.52329144866696438507384362168, 5.73901189515565344498359566074, 5.97651217865648722128749755082, 6.66843397542123878391877571256, 6.74837658191249750479556754827, 7.26608016874994634906267709187, 7.41889197249961132116921462587, 7.79470942502315420280141410663, 7.87795856184446085183920192508, 8.567757934604622706684121475401, 8.614624849082227082319612573810, 8.765401354852331276024806660120, 9.104203974436054120229060692702