L(s) = 1 | + 3·2-s − 3·3-s + 4·4-s − 9·6-s + 8·7-s + 4·8-s + 6·9-s − 3·11-s − 12·12-s + 6·13-s + 24·14-s + 3·16-s + 4·17-s + 18·18-s − 2·19-s − 24·21-s − 9·22-s + 12·23-s − 12·24-s + 18·26-s − 10·27-s + 32·28-s − 8·29-s + 8·31-s − 32-s + 9·33-s + 12·34-s + ⋯ |
L(s) = 1 | + 2.12·2-s − 1.73·3-s + 2·4-s − 3.67·6-s + 3.02·7-s + 1.41·8-s + 2·9-s − 0.904·11-s − 3.46·12-s + 1.66·13-s + 6.41·14-s + 3/4·16-s + 0.970·17-s + 4.24·18-s − 0.458·19-s − 5.23·21-s − 1.91·22-s + 2.50·23-s − 2.44·24-s + 3.53·26-s − 1.92·27-s + 6.04·28-s − 1.48·29-s + 1.43·31-s − 0.176·32-s + 1.56·33-s + 2.05·34-s + ⋯ |
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((33⋅56⋅113)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅113
|
Sign: |
1
|
Analytic conductor: |
285.886 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅113, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
8.544148764 |
L(21) |
≈ |
8.544148764 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)3 |
| 5 | | 1 |
| 11 | C1 | (1+T)3 |
good | 2 | S4×C2 | 1−3T+5T2−7T3+5pT4−3p2T5+p3T6 |
| 7 | S4×C2 | 1−8T+37T2−116T3+37pT4−8p2T5+p3T6 |
| 13 | S4×C2 | 1−6T+11T2−8T3+11pT4−6p2T5+p3T6 |
| 17 | S4×C2 | 1−4T+23T2−20T3+23pT4−4p2T5+p3T6 |
| 19 | S4×C2 | 1+2T+5T2−108T3+5pT4+2p2T5+p3T6 |
| 23 | C2 | (1−4T+pT2)3 |
| 29 | S4×C2 | 1+8T+3pT2+432T3+3p2T4+8p2T5+p3T6 |
| 31 | S4×C2 | 1−8T+101T2−480T3+101pT4−8p2T5+p3T6 |
| 37 | S4×C2 | 1−4T+95T2−264T3+95pT4−4p2T5+p3T6 |
| 41 | S4×C2 | 1+8T+3pT2+624T3+3p2T4+8p2T5+p3T6 |
| 43 | S4×C2 | 1−8T+145T2−692T3+145pT4−8p2T5+p3T6 |
| 47 | S4×C2 | 1−8T+125T2−592T3+125pT4−8p2T5+p3T6 |
| 53 | S4×C2 | 1+8T+127T2+576T3+127pT4+8p2T5+p3T6 |
| 59 | S4×C2 | 1+8T+113T2+1024T3+113pT4+8p2T5+p3T6 |
| 61 | S4×C2 | 1−2T+131T2−204T3+131pT4−2p2T5+p3T6 |
| 67 | S4×C2 | 1−12T+185T2−1288T3+185pT4−12p2T5+p3T6 |
| 71 | S4×C2 | 1+12T+245T2+1688T3+245pT4+12p2T5+p3T6 |
| 73 | S4×C2 | 1−18T+279T2−2536T3+279pT4−18p2T5+p3T6 |
| 79 | S4×C2 | 1+6T+233T2+940T3+233pT4+6p2T5+p3T6 |
| 83 | S4×C2 | 1+2T+245T2+328T3+245pT4+2p2T5+p3T6 |
| 89 | S4×C2 | 1−2T+255T2−348T3+255pT4−2p2T5+p3T6 |
| 97 | S4×C2 | 1+8T+259T2+1424T3+259pT4+8p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.168836514074333158517830630843, −8.535774714872927885589435672188, −8.511226800400000433009649511041, −8.042429170907351404348630653450, −7.978377094133140898193965544623, −7.47731373788340706321215657623, −7.34550030273298068337234858901, −6.96569658306558056074072397097, −6.47542481197842590998376621368, −6.38739929905039578222873250661, −5.81889204724798485412087037558, −5.58032556971060338129616761729, −5.39471893138383905450016926700, −5.07815310897846657421056372475, −4.98651758517345396645537036177, −4.67666615259883987453194053627, −4.28930424590553349006082575792, −4.16631700215969944884114739038, −3.79848399739394893566659218010, −3.16781990644841169311502821444, −2.88147475175510917268599223343, −2.08486401237106693669829180021, −1.75765100409066135275359600174, −1.16785437323250681236653867749, −0.963447407139270182895892958408,
0.963447407139270182895892958408, 1.16785437323250681236653867749, 1.75765100409066135275359600174, 2.08486401237106693669829180021, 2.88147475175510917268599223343, 3.16781990644841169311502821444, 3.79848399739394893566659218010, 4.16631700215969944884114739038, 4.28930424590553349006082575792, 4.67666615259883987453194053627, 4.98651758517345396645537036177, 5.07815310897846657421056372475, 5.39471893138383905450016926700, 5.58032556971060338129616761729, 5.81889204724798485412087037558, 6.38739929905039578222873250661, 6.47542481197842590998376621368, 6.96569658306558056074072397097, 7.34550030273298068337234858901, 7.47731373788340706321215657623, 7.978377094133140898193965544623, 8.042429170907351404348630653450, 8.511226800400000433009649511041, 8.535774714872927885589435672188, 9.168836514074333158517830630843