Properties

Label 6-825e3-1.1-c1e3-0-1
Degree 66
Conductor 561515625561515625
Sign 11
Analytic cond. 285.886285.886
Root an. cond. 2.566642.56664
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 3·6-s + 2·8-s + 6·9-s + 3·11-s + 2·13-s + 3·16-s + 2·17-s + 6·18-s + 8·19-s + 3·22-s − 6·24-s + 2·26-s − 10·27-s − 10·29-s + 8·31-s + 3·32-s − 9·33-s + 2·34-s + 6·37-s + 8·38-s − 6·39-s − 14·41-s − 4·43-s + 8·47-s − 9·48-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s − 1.22·6-s + 0.707·8-s + 2·9-s + 0.904·11-s + 0.554·13-s + 3/4·16-s + 0.485·17-s + 1.41·18-s + 1.83·19-s + 0.639·22-s − 1.22·24-s + 0.392·26-s − 1.92·27-s − 1.85·29-s + 1.43·31-s + 0.530·32-s − 1.56·33-s + 0.342·34-s + 0.986·37-s + 1.29·38-s − 0.960·39-s − 2.18·41-s − 0.609·43-s + 1.16·47-s − 1.29·48-s + ⋯

Functional equation

Λ(s)=((3356113)s/2ΓC(s)3L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((3356113)s/2ΓC(s+1/2)3L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 66
Conductor: 33561133^{3} \cdot 5^{6} \cdot 11^{3}
Sign: 11
Analytic conductor: 285.886285.886
Root analytic conductor: 2.566642.56664
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (6, 3356113, ( :1/2,1/2,1/2), 1)(6,\ 3^{3} \cdot 5^{6} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 2.7438647662.743864766
L(12)L(\frac12) \approx 2.7438647662.743864766
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 (1+T)3 ( 1 + T )^{3}
5 1 1
11C1C_1 (1T)3 ( 1 - T )^{3}
good2S4×C2S_4\times C_2 1T+T23T3+pT4p2T5+p3T6 1 - T + T^{2} - 3 T^{3} + p T^{4} - p^{2} T^{5} + p^{3} T^{6}
7S4×C2S_4\times C_2 1+5T216T3+5pT4+p3T6 1 + 5 T^{2} - 16 T^{3} + 5 p T^{4} + p^{3} T^{6}
13D6D_{6} 12T+27T244T3+27pT42p2T5+p3T6 1 - 2 T + 27 T^{2} - 44 T^{3} + 27 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6}
17S4×C2S_4\times C_2 12TT2+116T3pT42p2T5+p3T6 1 - 2 T - T^{2} + 116 T^{3} - p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6}
19S4×C2S_4\times C_2 18T+41T2144T3+41pT48p2T5+p3T6 1 - 8 T + 41 T^{2} - 144 T^{3} + 41 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6}
23S4×C2S_4\times C_2 1+5T2+128T3+5pT4+p3T6 1 + 5 T^{2} + 128 T^{3} + 5 p T^{4} + p^{3} T^{6}
29S4×C2S_4\times C_2 1+10T+99T2+540T3+99pT4+10p2T5+p3T6 1 + 10 T + 99 T^{2} + 540 T^{3} + 99 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6}
31S4×C2S_4\times C_2 18T+61T2368T3+61pT48p2T5+p3T6 1 - 8 T + 61 T^{2} - 368 T^{3} + 61 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6}
37C2C_2 (12T+pT2)3 ( 1 - 2 T + p T^{2} )^{3}
41S4×C2S_4\times C_2 1+14T+167T2+1156T3+167pT4+14p2T5+p3T6 1 + 14 T + 167 T^{2} + 1156 T^{3} + 167 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6}
43S4×C2S_4\times C_2 1+4T+49T256T3+49pT4+4p2T5+p3T6 1 + 4 T + 49 T^{2} - 56 T^{3} + 49 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6}
47S4×C2S_4\times C_2 18T+109T2624T3+109pT48p2T5+p3T6 1 - 8 T + 109 T^{2} - 624 T^{3} + 109 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6}
53S4×C2S_4\times C_2 16T+107T2644T3+107pT46p2T5+p3T6 1 - 6 T + 107 T^{2} - 644 T^{3} + 107 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6}
59S4×C2S_4\times C_2 112T+161T21096T3+161pT412p2T5+p3T6 1 - 12 T + 161 T^{2} - 1096 T^{3} + 161 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6}
61S4×C2S_4\times C_2 1+6T+131T2+484T3+131pT4+6p2T5+p3T6 1 + 6 T + 131 T^{2} + 484 T^{3} + 131 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6}
67S4×C2S_4\times C_2 14T+153T2472T3+153pT44p2T5+p3T6 1 - 4 T + 153 T^{2} - 472 T^{3} + 153 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6}
71S4×C2S_4\times C_2 18T+181T21008T3+181pT48p2T5+p3T6 1 - 8 T + 181 T^{2} - 1008 T^{3} + 181 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6}
73S4×C2S_4\times C_2 114T+223T21700T3+223pT414p2T5+p3T6 1 - 14 T + 223 T^{2} - 1700 T^{3} + 223 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6}
79S4×C2S_4\times C_2 112T+173T21096T3+173pT412p2T5+p3T6 1 - 12 T + 173 T^{2} - 1096 T^{3} + 173 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6}
83S4×C2S_4\times C_2 1+129T216T3+129pT4+p3T6 1 + 129 T^{2} - 16 T^{3} + 129 p T^{4} + p^{3} T^{6}
89S4×C2S_4\times C_2 1+10T+215T2+1580T3+215pT4+10p2T5+p3T6 1 + 10 T + 215 T^{2} + 1580 T^{3} + 215 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6}
97S4×C2S_4\times C_2 1+22T+399T2+4276T3+399pT4+22p2T5+p3T6 1 + 22 T + 399 T^{2} + 4276 T^{3} + 399 p T^{4} + 22 p^{2} T^{5} + p^{3} T^{6}
show more
show less
   L(s)=p j=16(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.509729547902967316931157586557, −8.719332441510926997684578857334, −8.409578853511103745454259503108, −8.318272012970896134030915355471, −7.80148911629081451534797706316, −7.58644271444495996613638756312, −7.26252456607141353211515782971, −6.86355015065206450571995951020, −6.65996652849161641384712338128, −6.61067391875904416570933614709, −5.82175593387592209920033989527, −5.79551129756285340068851740203, −5.66318824732485087487866037554, −5.04109463830870922650412143532, −4.88109582633404357410849875738, −4.87616480452632839857544481654, −3.93947098832744351545324993545, −3.93011457200404357013828179400, −3.90153366285414162564750922574, −3.10743837981281914408068596125, −2.86908830676011797181091771367, −1.91027492340035911089610934674, −1.67763356661225371788350724459, −1.01429119232244115145294490384, −0.72488056187630882142132887690, 0.72488056187630882142132887690, 1.01429119232244115145294490384, 1.67763356661225371788350724459, 1.91027492340035911089610934674, 2.86908830676011797181091771367, 3.10743837981281914408068596125, 3.90153366285414162564750922574, 3.93011457200404357013828179400, 3.93947098832744351545324993545, 4.87616480452632839857544481654, 4.88109582633404357410849875738, 5.04109463830870922650412143532, 5.66318824732485087487866037554, 5.79551129756285340068851740203, 5.82175593387592209920033989527, 6.61067391875904416570933614709, 6.65996652849161641384712338128, 6.86355015065206450571995951020, 7.26252456607141353211515782971, 7.58644271444495996613638756312, 7.80148911629081451534797706316, 8.318272012970896134030915355471, 8.409578853511103745454259503108, 8.719332441510926997684578857334, 9.509729547902967316931157586557

Graph of the ZZ-function along the critical line