Properties

Label 6-7800e3-1.1-c1e3-0-7
Degree $6$
Conductor $474552000000$
Sign $1$
Analytic cond. $241610.$
Root an. cond. $7.89197$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·7-s + 6·9-s + 2·11-s − 3·13-s − 2·17-s + 3·19-s − 6·21-s − 4·23-s + 10·27-s + 29-s + 14·31-s + 6·33-s − 37-s − 9·39-s + 5·41-s − 6·43-s + 5·47-s − 12·49-s − 6·51-s + 15·53-s + 9·57-s + 8·59-s + 18·61-s − 12·63-s − 3·67-s − 12·69-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.755·7-s + 2·9-s + 0.603·11-s − 0.832·13-s − 0.485·17-s + 0.688·19-s − 1.30·21-s − 0.834·23-s + 1.92·27-s + 0.185·29-s + 2.51·31-s + 1.04·33-s − 0.164·37-s − 1.44·39-s + 0.780·41-s − 0.914·43-s + 0.729·47-s − 1.71·49-s − 0.840·51-s + 2.06·53-s + 1.19·57-s + 1.04·59-s + 2.30·61-s − 1.51·63-s − 0.366·67-s − 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 13^{3}\)
Sign: $1$
Analytic conductor: \(241610.\)
Root analytic conductor: \(7.89197\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 13^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(12.49664683\)
\(L(\frac12)\) \(\approx\) \(12.49664683\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{3} \)
5 \( 1 \)
13$C_1$ \( ( 1 + T )^{3} \)
good7$S_4\times C_2$ \( 1 + 2 T + 16 T^{2} + 20 T^{3} + 16 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 2 T + 4 T^{2} + 36 T^{3} + 4 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 2 T + 44 T^{2} + 64 T^{3} + 44 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 3 T + 17 T^{2} - 14 T^{3} + 17 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 4 T + 49 T^{2} + 120 T^{3} + 49 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - T + 54 T^{2} - 57 T^{3} + 54 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 14 T + 128 T^{2} - 768 T^{3} + 128 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + T + 87 T^{2} + 94 T^{3} + 87 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 5 T + 107 T^{2} - 346 T^{3} + 107 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 6 T + 101 T^{2} + 508 T^{3} + 101 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 5 T + 130 T^{2} - 411 T^{3} + 130 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 15 T + 194 T^{2} - 1579 T^{3} + 194 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 8 T + 80 T^{2} - 274 T^{3} + 80 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 18 T + 200 T^{2} - 1532 T^{3} + 200 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 3 T + 14 T^{2} + 341 T^{3} + 14 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 23 T + 365 T^{2} - 3502 T^{3} + 365 p T^{4} - 23 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 8 T + 207 T^{2} - 1088 T^{3} + 207 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 7 T + 125 T^{2} - 822 T^{3} + 125 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 8 T + 208 T^{2} - 1158 T^{3} + 208 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 14 T + 235 T^{2} + 2364 T^{3} + 235 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 9 T^{2} - 272 T^{3} - 9 p T^{4} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.95226843690636668021618399339, −6.64830092603914128731069642449, −6.61487731310417875338173927364, −6.41796797197110059155321250359, −6.21762979626372457683138029856, −5.69828887806746847553125071080, −5.47864846213836003309431401787, −5.32203197887047253534596418842, −4.93953817050152635471610312513, −4.81300769640275445846210166649, −4.34253535925728150234271408013, −4.16442458450561634636238104478, −4.15295630319403242015120352751, −3.60212356180885519765312607053, −3.43796396340699461878803761398, −3.43568263029269544148650132176, −2.76464827656892912960537622508, −2.67104844372336206001247091008, −2.63587982411024090549093492802, −2.03533605584921324542492607317, −1.97163636720051956428110036566, −1.69822645751751309983858918802, −0.980656175413720460102212646079, −0.67744902604118656560256861552, −0.61467378067749353879409291721, 0.61467378067749353879409291721, 0.67744902604118656560256861552, 0.980656175413720460102212646079, 1.69822645751751309983858918802, 1.97163636720051956428110036566, 2.03533605584921324542492607317, 2.63587982411024090549093492802, 2.67104844372336206001247091008, 2.76464827656892912960537622508, 3.43568263029269544148650132176, 3.43796396340699461878803761398, 3.60212356180885519765312607053, 4.15295630319403242015120352751, 4.16442458450561634636238104478, 4.34253535925728150234271408013, 4.81300769640275445846210166649, 4.93953817050152635471610312513, 5.32203197887047253534596418842, 5.47864846213836003309431401787, 5.69828887806746847553125071080, 6.21762979626372457683138029856, 6.41796797197110059155321250359, 6.61487731310417875338173927364, 6.64830092603914128731069642449, 6.95226843690636668021618399339

Graph of the $Z$-function along the critical line