L(s) = 1 | − 3-s − 3·5-s − 7-s − 4·9-s − 11·13-s + 3·15-s − 3·17-s + 3·19-s + 21-s − 9·23-s + 6·25-s + 5·27-s − 7·29-s + 6·31-s + 3·35-s − 20·37-s + 11·39-s − 22·41-s − 10·43-s + 12·45-s − 4·49-s + 3·51-s − 7·53-s − 3·57-s + 11·59-s − 16·61-s + 4·63-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.34·5-s − 0.377·7-s − 4/3·9-s − 3.05·13-s + 0.774·15-s − 0.727·17-s + 0.688·19-s + 0.218·21-s − 1.87·23-s + 6/5·25-s + 0.962·27-s − 1.29·29-s + 1.07·31-s + 0.507·35-s − 3.28·37-s + 1.76·39-s − 3.43·41-s − 1.52·43-s + 1.78·45-s − 4/7·49-s + 0.420·51-s − 0.961·53-s − 0.397·57-s + 1.43·59-s − 2.04·61-s + 0.503·63-s + ⋯ |
Λ(s)=(=((29⋅53⋅193)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((29⋅53⋅193)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
29⋅53⋅193
|
Sign: |
−1
|
Analytic conductor: |
223.497 |
Root analytic conductor: |
2.46345 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 29⋅53⋅193, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)3 |
| 19 | C1 | (1−T)3 |
good | 3 | S4×C2 | 1+T+5T2+4T3+5pT4+p2T5+p3T6 |
| 7 | S4×C2 | 1+T+5T2+30T3+5pT4+p2T5+p3T6 |
| 11 | S4×C2 | 1+5T2+16T3+5pT4+p3T6 |
| 13 | S4×C2 | 1+11T+55T2+200T3+55pT4+11p2T5+p3T6 |
| 17 | S4×C2 | 1+3T+47T2+98T3+47pT4+3p2T5+p3T6 |
| 23 | S4×C2 | 1+9T+89T2+422T3+89pT4+9p2T5+p3T6 |
| 29 | S4×C2 | 1+7T+43T2+114T3+43pT4+7p2T5+p3T6 |
| 31 | S4×C2 | 1−6T+77T2−340T3+77pT4−6p2T5+p3T6 |
| 37 | S4×C2 | 1+20T+237T2+1724T3+237pT4+20p2T5+p3T6 |
| 41 | D6 | 1+22T+223T2+1572T3+223pT4+22p2T5+p3T6 |
| 43 | S4×C2 | 1+10T+97T2+508T3+97pT4+10p2T5+p3T6 |
| 47 | S4×C2 | 1+29T2−128T3+29pT4+p3T6 |
| 53 | S4×C2 | 1+7T−9T2−600T3−9pT4+7p2T5+p3T6 |
| 59 | S4×C2 | 1−11T+37T2+246T3+37pT4−11p2T5+p3T6 |
| 61 | S4×C2 | 1+16T+207T2+1600T3+207pT4+16p2T5+p3T6 |
| 67 | S4×C2 | 1+T+101T2+396T3+101pT4+p2T5+p3T6 |
| 71 | C2 | (1+pT2)3 |
| 73 | S4×C2 | 1+5T+47T2−498T3+47pT4+5p2T5+p3T6 |
| 79 | S4×C2 | 1−26T+445T2−4604T3+445pT4−26p2T5+p3T6 |
| 83 | S4×C2 | 1+14T+297T2+2340T3+297pT4+14p2T5+p3T6 |
| 89 | S4×C2 | 1+6T+15T2−188T3+15pT4+6p2T5+p3T6 |
| 97 | S4×C2 | 1−8T+233T2−1260T3+233pT4−8p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.851047708190152447872137914912, −9.300111935762805548800554094466, −9.082066331624621691716459984824, −8.737575313337994366301470568337, −8.320629452269819123312144686836, −8.228861095782982207773762068028, −8.012238407729892217142472895756, −7.53096182092576360959363346625, −7.24289138361354677131164445580, −7.11895386741679432208888755894, −6.69824582957521889411372400506, −6.42565122341162467266792565573, −6.26440952286459499269251298369, −5.42176104799751120212455301215, −5.31852128526798038013231331601, −5.27819174808657037261681585591, −4.71825770333991849318671689267, −4.62080971355182172365566202781, −4.07072846440327463695774985273, −3.51360915669260130052113253599, −3.25415039825249590894571527107, −3.15140318969988800211125564551, −2.46246116481331798869274685032, −2.02150641146546994728047556882, −1.66190957001146624107476081496, 0, 0, 0,
1.66190957001146624107476081496, 2.02150641146546994728047556882, 2.46246116481331798869274685032, 3.15140318969988800211125564551, 3.25415039825249590894571527107, 3.51360915669260130052113253599, 4.07072846440327463695774985273, 4.62080971355182172365566202781, 4.71825770333991849318671689267, 5.27819174808657037261681585591, 5.31852128526798038013231331601, 5.42176104799751120212455301215, 6.26440952286459499269251298369, 6.42565122341162467266792565573, 6.69824582957521889411372400506, 7.11895386741679432208888755894, 7.24289138361354677131164445580, 7.53096182092576360959363346625, 8.012238407729892217142472895756, 8.228861095782982207773762068028, 8.320629452269819123312144686836, 8.737575313337994366301470568337, 9.082066331624621691716459984824, 9.300111935762805548800554094466, 9.851047708190152447872137914912