Properties

Label 6-760e3-1.1-c1e3-0-2
Degree $6$
Conductor $438976000$
Sign $-1$
Analytic cond. $223.497$
Root an. cond. $2.46345$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s − 4·9-s − 11·13-s + 3·15-s − 3·17-s + 3·19-s + 21-s − 9·23-s + 6·25-s + 5·27-s − 7·29-s + 6·31-s + 3·35-s − 20·37-s + 11·39-s − 22·41-s − 10·43-s + 12·45-s − 4·49-s + 3·51-s − 7·53-s − 3·57-s + 11·59-s − 16·61-s + 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s − 4/3·9-s − 3.05·13-s + 0.774·15-s − 0.727·17-s + 0.688·19-s + 0.218·21-s − 1.87·23-s + 6/5·25-s + 0.962·27-s − 1.29·29-s + 1.07·31-s + 0.507·35-s − 3.28·37-s + 1.76·39-s − 3.43·41-s − 1.52·43-s + 1.78·45-s − 4/7·49-s + 0.420·51-s − 0.961·53-s − 0.397·57-s + 1.43·59-s − 2.04·61-s + 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{3} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{3} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 5^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(223.497\)
Root analytic conductor: \(2.46345\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{9} \cdot 5^{3} \cdot 19^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{3} \)
19$C_1$ \( ( 1 - T )^{3} \)
good3$S_4\times C_2$ \( 1 + T + 5 T^{2} + 4 T^{3} + 5 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + T + 5 T^{2} + 30 T^{3} + 5 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 + 5 T^{2} + 16 T^{3} + 5 p T^{4} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 11 T + 55 T^{2} + 200 T^{3} + 55 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 3 T + 47 T^{2} + 98 T^{3} + 47 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 9 T + 89 T^{2} + 422 T^{3} + 89 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 7 T + 43 T^{2} + 114 T^{3} + 43 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 6 T + 77 T^{2} - 340 T^{3} + 77 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 20 T + 237 T^{2} + 1724 T^{3} + 237 p T^{4} + 20 p^{2} T^{5} + p^{3} T^{6} \)
41$D_{6}$ \( 1 + 22 T + 223 T^{2} + 1572 T^{3} + 223 p T^{4} + 22 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 10 T + 97 T^{2} + 508 T^{3} + 97 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 29 T^{2} - 128 T^{3} + 29 p T^{4} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 7 T - 9 T^{2} - 600 T^{3} - 9 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 11 T + 37 T^{2} + 246 T^{3} + 37 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 16 T + 207 T^{2} + 1600 T^{3} + 207 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + T + 101 T^{2} + 396 T^{3} + 101 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
71$C_2$ \( ( 1 + p T^{2} )^{3} \)
73$S_4\times C_2$ \( 1 + 5 T + 47 T^{2} - 498 T^{3} + 47 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 26 T + 445 T^{2} - 4604 T^{3} + 445 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 14 T + 297 T^{2} + 2340 T^{3} + 297 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 6 T + 15 T^{2} - 188 T^{3} + 15 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 8 T + 233 T^{2} - 1260 T^{3} + 233 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.851047708190152447872137914912, −9.300111935762805548800554094466, −9.082066331624621691716459984824, −8.737575313337994366301470568337, −8.320629452269819123312144686836, −8.228861095782982207773762068028, −8.012238407729892217142472895756, −7.53096182092576360959363346625, −7.24289138361354677131164445580, −7.11895386741679432208888755894, −6.69824582957521889411372400506, −6.42565122341162467266792565573, −6.26440952286459499269251298369, −5.42176104799751120212455301215, −5.31852128526798038013231331601, −5.27819174808657037261681585591, −4.71825770333991849318671689267, −4.62080971355182172365566202781, −4.07072846440327463695774985273, −3.51360915669260130052113253599, −3.25415039825249590894571527107, −3.15140318969988800211125564551, −2.46246116481331798869274685032, −2.02150641146546994728047556882, −1.66190957001146624107476081496, 0, 0, 0, 1.66190957001146624107476081496, 2.02150641146546994728047556882, 2.46246116481331798869274685032, 3.15140318969988800211125564551, 3.25415039825249590894571527107, 3.51360915669260130052113253599, 4.07072846440327463695774985273, 4.62080971355182172365566202781, 4.71825770333991849318671689267, 5.27819174808657037261681585591, 5.31852128526798038013231331601, 5.42176104799751120212455301215, 6.26440952286459499269251298369, 6.42565122341162467266792565573, 6.69824582957521889411372400506, 7.11895386741679432208888755894, 7.24289138361354677131164445580, 7.53096182092576360959363346625, 8.012238407729892217142472895756, 8.228861095782982207773762068028, 8.320629452269819123312144686836, 8.737575313337994366301470568337, 9.082066331624621691716459984824, 9.300111935762805548800554094466, 9.851047708190152447872137914912

Graph of the $Z$-function along the critical line