Properties

Label 6-650e3-1.1-c5e3-0-1
Degree $6$
Conductor $274625000$
Sign $1$
Analytic cond. $1.13297\times 10^{6}$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·2-s + 22·3-s + 96·4-s + 264·6-s + 234·7-s + 640·8-s − 45·9-s + 48·11-s + 2.11e3·12-s − 507·13-s + 2.80e3·14-s + 3.84e3·16-s − 1.50e3·17-s − 540·18-s − 360·19-s + 5.14e3·21-s + 576·22-s + 2.37e3·23-s + 1.40e4·24-s − 6.08e3·26-s − 2.93e3·27-s + 2.24e4·28-s − 3.07e3·29-s − 5.38e3·31-s + 2.15e4·32-s + 1.05e3·33-s − 1.80e4·34-s + ⋯
L(s)  = 1  + 2.12·2-s + 1.41·3-s + 3·4-s + 2.99·6-s + 1.80·7-s + 3.53·8-s − 0.185·9-s + 0.119·11-s + 4.23·12-s − 0.832·13-s + 3.82·14-s + 15/4·16-s − 1.26·17-s − 0.392·18-s − 0.228·19-s + 2.54·21-s + 0.253·22-s + 0.934·23-s + 4.98·24-s − 1.76·26-s − 0.774·27-s + 5.41·28-s − 0.679·29-s − 1.00·31-s + 3.71·32-s + 0.168·33-s − 2.68·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{6} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 5^{6} \cdot 13^{3}\)
Sign: $1$
Analytic conductor: \(1.13297\times 10^{6}\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 5^{6} \cdot 13^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(55.47093913\)
\(L(\frac12)\) \(\approx\) \(55.47093913\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{2} T )^{3} \)
5 \( 1 \)
13$C_1$ \( ( 1 + p^{2} T )^{3} \)
good3$S_4\times C_2$ \( 1 - 22 T + 529 T^{2} - 3232 p T^{3} + 529 p^{5} T^{4} - 22 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 - 234 T + 48705 T^{2} - 7824532 T^{3} + 48705 p^{5} T^{4} - 234 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 48 T + 76377 T^{2} + 58976052 T^{3} + 76377 p^{5} T^{4} - 48 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 1506 T + 3273807 T^{2} + 2997817500 T^{3} + 3273807 p^{5} T^{4} + 1506 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 360 T + 161955 p T^{2} - 1434259964 T^{3} + 161955 p^{6} T^{4} + 360 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 2370 T + 19159293 T^{2} - 30182176920 T^{3} + 19159293 p^{5} T^{4} - 2370 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 3078 T + 41304531 T^{2} + 146324754036 T^{3} + 41304531 p^{5} T^{4} + 3078 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 5388 T + 26264277 T^{2} + 161901418108 T^{3} + 26264277 p^{5} T^{4} + 5388 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 25362 T + 395488467 T^{2} - 3869148349420 T^{3} + 395488467 p^{5} T^{4} - 25362 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 15906 T - 72143817 T^{2} - 3142322038788 T^{3} - 72143817 p^{5} T^{4} + 15906 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 39306 T + 941655657 T^{2} - 13605136511296 T^{3} + 941655657 p^{5} T^{4} - 39306 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 - 17778 T + 430606137 T^{2} - 3892325349540 T^{3} + 430606137 p^{5} T^{4} - 17778 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 9246 T - 139832133 T^{2} + 2191133695476 T^{3} - 139832133 p^{5} T^{4} + 9246 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 77760 T + 3729319041 T^{2} + 118237047820380 T^{3} + 3729319041 p^{5} T^{4} + 77760 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 17982 T + 1546877139 T^{2} - 16008491590916 T^{3} + 1546877139 p^{5} T^{4} - 17982 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 2922 T + 1163644365 T^{2} - 57141979467316 T^{3} + 1163644365 p^{5} T^{4} - 2922 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 4944 T + 3669025341 T^{2} + 114486868308 T^{3} + 3669025341 p^{5} T^{4} + 4944 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 43278 T + 5189491839 T^{2} + 177703264664708 T^{3} + 5189491839 p^{5} T^{4} + 43278 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 42120 T + 5223395229 T^{2} - 282172460852048 T^{3} + 5223395229 p^{5} T^{4} - 42120 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 58098 T + 10357081509 T^{2} + 373431668490228 T^{3} + 10357081509 p^{5} T^{4} + 58098 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 - 19614 T + 11485034871 T^{2} - 31522212744708 T^{3} + 11485034871 p^{5} T^{4} - 19614 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 87078 T + 14634643503 T^{2} - 1303843661262292 T^{3} + 14634643503 p^{5} T^{4} - 87078 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.765670026982283328815422666282, −8.091084382420908790824892733140, −7.968868778022150678404246625404, −7.76159839654417269503164052501, −7.33961416325794839205208621935, −7.25715286287775521038886666802, −6.85741662499994260570537028487, −6.32779923722187225633952688426, −6.06721758565053115164935135011, −5.80399389139785005565484171032, −5.47222337540423347793952400417, −5.15976472861249016692667227020, −4.54005019225721683972820529774, −4.52782093436346387701863180333, −4.42700831901146259938861051574, −4.07525763361489831936597206476, −3.24190532139064035248684307828, −3.14965351235742196323327859547, −3.02730064186136903564756910865, −2.29995135908343013614979313403, −2.22063973322207767431042394291, −1.99113021213989685235262906358, −1.52453463465547112685543993256, −0.846448305910342452938626606605, −0.50783733117930365376203155698, 0.50783733117930365376203155698, 0.846448305910342452938626606605, 1.52453463465547112685543993256, 1.99113021213989685235262906358, 2.22063973322207767431042394291, 2.29995135908343013614979313403, 3.02730064186136903564756910865, 3.14965351235742196323327859547, 3.24190532139064035248684307828, 4.07525763361489831936597206476, 4.42700831901146259938861051574, 4.52782093436346387701863180333, 4.54005019225721683972820529774, 5.15976472861249016692667227020, 5.47222337540423347793952400417, 5.80399389139785005565484171032, 6.06721758565053115164935135011, 6.32779923722187225633952688426, 6.85741662499994260570537028487, 7.25715286287775521038886666802, 7.33961416325794839205208621935, 7.76159839654417269503164052501, 7.968868778022150678404246625404, 8.091084382420908790824892733140, 8.765670026982283328815422666282

Graph of the $Z$-function along the critical line