Properties

Label 6-495e3-1.1-c5e3-0-5
Degree $6$
Conductor $121287375$
Sign $-1$
Analytic cond. $500376.$
Root an. cond. $8.91010$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·2-s + 13·4-s + 75·5-s + 92·7-s + 21·8-s − 525·10-s − 363·11-s − 90·13-s − 644·14-s − 787·16-s − 1.93e3·17-s + 2.08e3·19-s + 975·20-s + 2.54e3·22-s − 1.22e3·23-s + 3.75e3·25-s + 630·26-s + 1.19e3·28-s − 4.40e3·29-s − 1.06e4·31-s + 3.82e3·32-s + 1.35e4·34-s + 6.90e3·35-s − 8.19e3·37-s − 1.45e4·38-s + 1.57e3·40-s − 5.97e3·41-s + ⋯
L(s)  = 1  − 1.23·2-s + 0.406·4-s + 1.34·5-s + 0.709·7-s + 0.116·8-s − 1.66·10-s − 0.904·11-s − 0.147·13-s − 0.878·14-s − 0.768·16-s − 1.62·17-s + 1.32·19-s + 0.545·20-s + 1.11·22-s − 0.480·23-s + 6/5·25-s + 0.182·26-s + 0.288·28-s − 0.971·29-s − 1.99·31-s + 0.661·32-s + 2.00·34-s + 0.952·35-s − 0.983·37-s − 1.63·38-s + 0.155·40-s − 0.555·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 5^{3} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(500376.\)
Root analytic conductor: \(8.91010\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{6} \cdot 5^{3} \cdot 11^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - p^{2} T )^{3} \)
11$C_1$ \( ( 1 + p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 + 7 T + 9 p^{2} T^{2} + 35 p^{2} T^{3} + 9 p^{7} T^{4} + 7 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 - 92 T + 28489 T^{2} - 1066120 T^{3} + 28489 p^{5} T^{4} - 92 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 90 T + 138199 T^{2} + 277505972 T^{3} + 138199 p^{5} T^{4} + 90 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 1934 T + 5070371 T^{2} + 5368097468 T^{3} + 5070371 p^{5} T^{4} + 1934 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 2084 T + 8452353 T^{2} - 10305943192 T^{3} + 8452353 p^{5} T^{4} - 2084 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 1220 T + 13380661 T^{2} + 13300348792 T^{3} + 13380661 p^{5} T^{4} + 1220 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 4402 T + 39672443 T^{2} + 99874588732 T^{3} + 39672443 p^{5} T^{4} + 4402 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 10688 T + 96146301 T^{2} + 612569968000 T^{3} + 96146301 p^{5} T^{4} + 10688 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 8190 T + 170949451 T^{2} + 970713759316 T^{3} + 170949451 p^{5} T^{4} + 8190 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 5974 T + 299475567 T^{2} + 1256639577796 T^{3} + 299475567 p^{5} T^{4} + 5974 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 18868 T + 130667157 T^{2} + 125017085992 T^{3} + 130667157 p^{5} T^{4} - 18868 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 55500 T + 1674509341 T^{2} + 31033835957928 T^{3} + 1674509341 p^{5} T^{4} + 55500 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 9206 T + 983431051 T^{2} + 8550502005892 T^{3} + 983431051 p^{5} T^{4} + 9206 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 - 59196 T + 3288274801 T^{2} - 91826674965992 T^{3} + 3288274801 p^{5} T^{4} - 59196 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 79902 T + 4181653075 T^{2} - 137963205899380 T^{3} + 4181653075 p^{5} T^{4} - 79902 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 4468 T + 2713884569 T^{2} - 18497379943480 T^{3} + 2713884569 p^{5} T^{4} - 4468 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 75164 T + 5685876085 T^{2} - 240054320850568 T^{3} + 5685876085 p^{5} T^{4} - 75164 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 61290 T + 3793555675 T^{2} + 101810291156612 T^{3} + 3793555675 p^{5} T^{4} + 61290 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 83564 T + 5767840805 T^{2} + 230557669308584 T^{3} + 5767840805 p^{5} T^{4} + 83564 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 74764 T + 9023557773 T^{2} + 388285988035672 T^{3} + 9023557773 p^{5} T^{4} + 74764 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 37342 T + 9594205287 T^{2} + 76517859977828 T^{3} + 9594205287 p^{5} T^{4} + 37342 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 33486 T + 20157600991 T^{2} - 669005112374372 T^{3} + 20157600991 p^{5} T^{4} - 33486 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.634028914395018788742209990712, −9.002427758517172359724889147080, −8.896945030102028982257142360633, −8.643733848685720394461864018645, −8.254842168384662534379301259615, −8.096452978739061480499515513326, −7.64254805529636345238901380412, −7.26899869782249388239385801971, −7.02954218480772893620888260112, −6.80955371820894929648654978799, −6.30711961394165983635936202470, −6.11981274007190423905475805579, −5.46872448552982961394403239557, −5.25924599944913516133628342267, −5.02940480424040915626792358488, −4.98498180843107031177584684939, −4.16398969710543466929210861165, −3.81337941963001702439019990928, −3.52658661723187206186345970158, −2.75298630562678748773885518769, −2.55721784997828013323490544742, −2.00218550281837574719358827836, −1.89879608670097303116549504279, −1.34779579441483380094084436390, −1.09669111185293068509503246652, 0, 0, 0, 1.09669111185293068509503246652, 1.34779579441483380094084436390, 1.89879608670097303116549504279, 2.00218550281837574719358827836, 2.55721784997828013323490544742, 2.75298630562678748773885518769, 3.52658661723187206186345970158, 3.81337941963001702439019990928, 4.16398969710543466929210861165, 4.98498180843107031177584684939, 5.02940480424040915626792358488, 5.25924599944913516133628342267, 5.46872448552982961394403239557, 6.11981274007190423905475805579, 6.30711961394165983635936202470, 6.80955371820894929648654978799, 7.02954218480772893620888260112, 7.26899869782249388239385801971, 7.64254805529636345238901380412, 8.096452978739061480499515513326, 8.254842168384662534379301259615, 8.643733848685720394461864018645, 8.896945030102028982257142360633, 9.002427758517172359724889147080, 9.634028914395018788742209990712

Graph of the $Z$-function along the critical line