L(s) = 1 | − 2·5-s − 3·7-s + 3·11-s + 8·13-s − 9·17-s − 3·19-s − 4·23-s − 2·25-s − 11·29-s − 5·31-s + 6·35-s + 4·37-s − 11·41-s − 4·43-s + 2·47-s + 6·49-s − 9·53-s − 6·55-s + 12·59-s − 2·61-s − 16·65-s − 9·67-s − 21·73-s − 9·77-s + 6·79-s + 7·83-s + 18·85-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.13·7-s + 0.904·11-s + 2.21·13-s − 2.18·17-s − 0.688·19-s − 0.834·23-s − 2/5·25-s − 2.04·29-s − 0.898·31-s + 1.01·35-s + 0.657·37-s − 1.71·41-s − 0.609·43-s + 0.291·47-s + 6/7·49-s − 1.23·53-s − 0.809·55-s + 1.56·59-s − 0.256·61-s − 1.98·65-s − 1.09·67-s − 2.45·73-s − 1.02·77-s + 0.675·79-s + 0.768·83-s + 1.95·85-s + ⋯ |
Λ(s)=(=((26⋅36⋅73⋅193)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((26⋅36⋅73⋅193)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
26⋅36⋅73⋅193
|
Sign: |
−1
|
Analytic conductor: |
55884.8 |
Root analytic conductor: |
6.18323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 26⋅36⋅73⋅193, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1+T)3 |
| 19 | C1 | (1+T)3 |
good | 5 | S4×C2 | 1+2T+6T2+6T3+6pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1−3T+26T2−46T3+26pT4−3p2T5+p3T6 |
| 13 | S4×C2 | 1−8T+50T2−192T3+50pT4−8p2T5+p3T6 |
| 17 | S4×C2 | 1+9T+4pT2+292T3+4p2T4+9p2T5+p3T6 |
| 23 | S4×C2 | 1+4T+64T2+180T3+64pT4+4p2T5+p3T6 |
| 29 | S4×C2 | 1+11T+102T2+636T3+102pT4+11p2T5+p3T6 |
| 31 | S4×C2 | 1+5T+76T2+314T3+76pT4+5p2T5+p3T6 |
| 37 | S4×C2 | 1−4T+92T2−246T3+92pT4−4p2T5+p3T6 |
| 41 | S4×C2 | 1+11T+110T2+622T3+110pT4+11p2T5+p3T6 |
| 43 | S4×C2 | 1+4T+37T2+376T3+37pT4+4p2T5+p3T6 |
| 47 | S4×C2 | 1−2T+66T2−372T3+66pT4−2p2T5+p3T6 |
| 53 | S4×C2 | 1+9T+120T2+632T3+120pT4+9p2T5+p3T6 |
| 59 | S4×C2 | 1−12T+132T2−1308T3+132pT4−12p2T5+p3T6 |
| 61 | S4×C2 | 1+2T+26T2+42T3+26pT4+2p2T5+p3T6 |
| 67 | S4×C2 | 1+9T+218T2+1192T3+218pT4+9p2T5+p3T6 |
| 71 | S4×C2 | 1+158T2+58T3+158pT4+p3T6 |
| 73 | S4×C2 | 1+21T+302T2+2764T3+302pT4+21p2T5+p3T6 |
| 79 | S4×C2 | 1−6T+89T2+68T3+89pT4−6p2T5+p3T6 |
| 83 | S4×C2 | 1−7T+204T2−1062T3+204pT4−7p2T5+p3T6 |
| 89 | S4×C2 | 1−18T+335T2−3268T3+335pT4−18p2T5+p3T6 |
| 97 | S4×C2 | 1−28T+330T2−2896T3+330pT4−28p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80233357009246873797216254831, −7.45709637976400741588544457565, −7.05525600287532077528601368695, −7.01460571540713490223087234466, −6.58981154981396501174413316534, −6.48949630681350100625244847123, −6.35892855877094674435060863559, −5.89121501983364901012169717262, −5.87936516085587305840767800565, −5.81180814346290804813736336848, −5.08894741655729006122253346542, −4.84329458615620407145141925152, −4.83133918485081641807896272980, −4.14156748431979660425516907669, −4.01055706408249825884400235926, −3.95715600855877940973954997520, −3.61417168403294593911068923119, −3.48509581821501164855341846140, −3.33193055776557401191519542690, −2.63091160861477335470633531621, −2.40920811542236548713162993931, −2.12635607869483977801507754761, −1.71142352880627929744876132350, −1.32804388299010437186613276852, −1.14207886106608566229236838372, 0, 0, 0,
1.14207886106608566229236838372, 1.32804388299010437186613276852, 1.71142352880627929744876132350, 2.12635607869483977801507754761, 2.40920811542236548713162993931, 2.63091160861477335470633531621, 3.33193055776557401191519542690, 3.48509581821501164855341846140, 3.61417168403294593911068923119, 3.95715600855877940973954997520, 4.01055706408249825884400235926, 4.14156748431979660425516907669, 4.83133918485081641807896272980, 4.84329458615620407145141925152, 5.08894741655729006122253346542, 5.81180814346290804813736336848, 5.87936516085587305840767800565, 5.89121501983364901012169717262, 6.35892855877094674435060863559, 6.48949630681350100625244847123, 6.58981154981396501174413316534, 7.01460571540713490223087234466, 7.05525600287532077528601368695, 7.45709637976400741588544457565, 7.80233357009246873797216254831