L(s) = 1 | − 2·3-s − 3·5-s − 9-s − 5·11-s + 2·13-s + 6·15-s + 10·17-s + 3·19-s − 17·23-s − 25-s + 6·27-s + 2·29-s + 6·31-s + 10·33-s + 14·37-s − 4·39-s + 4·41-s − 17·43-s + 3·45-s − 9·47-s − 20·51-s − 22·53-s + 15·55-s − 6·57-s + 6·59-s + 61-s − 6·65-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.34·5-s − 1/3·9-s − 1.50·11-s + 0.554·13-s + 1.54·15-s + 2.42·17-s + 0.688·19-s − 3.54·23-s − 1/5·25-s + 1.15·27-s + 0.371·29-s + 1.07·31-s + 1.74·33-s + 2.30·37-s − 0.640·39-s + 0.624·41-s − 2.59·43-s + 0.447·45-s − 1.31·47-s − 2.80·51-s − 3.02·53-s + 2.02·55-s − 0.794·57-s + 0.781·59-s + 0.128·61-s − 0.744·65-s + ⋯ |
Λ(s)=(=((26⋅76⋅193)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((26⋅76⋅193)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
26⋅76⋅193
|
Sign: |
−1
|
Analytic conductor: |
26294.2 |
Root analytic conductor: |
5.45309 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 26⋅76⋅193, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 19 | C1 | (1−T)3 |
good | 3 | S4×C2 | 1+2T+5T2+2pT3+5pT4+2p2T5+p3T6 |
| 5 | S4×C2 | 1+3T+2pT2+19T3+2p2T4+3p2T5+p3T6 |
| 11 | S4×C2 | 1+5T+34T2+109T3+34pT4+5p2T5+p3T6 |
| 13 | S4×C2 | 1−2T+33T2−54T3+33pT4−2p2T5+p3T6 |
| 17 | S4×C2 | 1−10T+67T2−304T3+67pT4−10p2T5+p3T6 |
| 23 | S4×C2 | 1+17T+160T2+931T3+160pT4+17p2T5+p3T6 |
| 29 | S4×C2 | 1−2T+pT2−134T3+p2T4−2p2T5+p3T6 |
| 31 | S4×C2 | 1−6T+57T2−358T3+57pT4−6p2T5+p3T6 |
| 37 | S4×C2 | 1−14T+169T2−30pT3+169pT4−14p2T5+p3T6 |
| 41 | S4×C2 | 1−4T+51T2−472T3+51pT4−4p2T5+p3T6 |
| 43 | S4×C2 | 1+17T+220T2+1611T3+220pT4+17p2T5+p3T6 |
| 47 | S4×C2 | 1+9T+124T2+735T3+124pT4+9p2T5+p3T6 |
| 53 | S4×C2 | 1+22T+225T2+1706T3+225pT4+22p2T5+p3T6 |
| 59 | C2 | (1−2T+pT2)3 |
| 61 | S4×C2 | 1−T+126T2−261T3+126pT4−p2T5+p3T6 |
| 67 | S4×C2 | 1−2T+133T2−100T3+133pT4−2p2T5+p3T6 |
| 71 | S4×C2 | 1+18T+277T2+2514T3+277pT4+18p2T5+p3T6 |
| 73 | S4×C2 | 1+21T+334T2+3217T3+334pT4+21p2T5+p3T6 |
| 79 | S4×C2 | 1−8T+253T2−1266T3+253pT4−8p2T5+p3T6 |
| 83 | S4×C2 | 1−27T+426T2−4439T3+426pT4−27p2T5+p3T6 |
| 89 | S4×C2 | 1+30T+501T2+5502T3+501pT4+30p2T5+p3T6 |
| 97 | S4×C2 | 1−14T+119T2−1252T3+119pT4−14p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.917549441894300742215295704536, −7.77771017374071011845873818023, −7.65810837774808098603254207517, −7.34406016692015463907470718202, −6.78725180752673093247316145623, −6.62396745751195080914907822486, −6.33748917171275030514348238141, −6.02714920013909723476670684605, −5.82955778538108564668481829748, −5.79473509243198593522896058360, −5.48053005281760321786826149591, −5.17726112097458194661994816131, −4.91293094674118048737648928705, −4.55255476816345666543820639882, −4.34564161666153776001083134109, −4.16932521480383459554958117862, −3.59756913058653986068066611719, −3.43146768360449209622122638107, −3.34830595301974350672237773885, −2.80244496267558262259992510542, −2.67345445942629267619065552653, −2.25012553492098650550712536626, −1.64139562653932564803890141457, −1.30178853215403316268020547367, −1.02303263923259426795241948509, 0, 0, 0,
1.02303263923259426795241948509, 1.30178853215403316268020547367, 1.64139562653932564803890141457, 2.25012553492098650550712536626, 2.67345445942629267619065552653, 2.80244496267558262259992510542, 3.34830595301974350672237773885, 3.43146768360449209622122638107, 3.59756913058653986068066611719, 4.16932521480383459554958117862, 4.34564161666153776001083134109, 4.55255476816345666543820639882, 4.91293094674118048737648928705, 5.17726112097458194661994816131, 5.48053005281760321786826149591, 5.79473509243198593522896058360, 5.82955778538108564668481829748, 6.02714920013909723476670684605, 6.33748917171275030514348238141, 6.62396745751195080914907822486, 6.78725180752673093247316145623, 7.34406016692015463907470718202, 7.65810837774808098603254207517, 7.77771017374071011845873818023, 7.917549441894300742215295704536