Properties

Label 6-296e3-1.1-c1e3-0-0
Degree 66
Conductor 2593433625934336
Sign 11
Analytic cond. 13.204013.2040
Root an. cond. 1.537391.53739
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 7·7-s − 9-s + 3·13-s − 2·15-s − 4·17-s + 8·19-s + 14·21-s + 9·23-s − 9·25-s − 7·27-s − 9·29-s + 17·31-s − 7·35-s − 3·37-s + 6·39-s − 16·41-s − 4·43-s + 45-s + 11·47-s + 18·49-s − 8·51-s − 3·53-s + 16·57-s − 2·59-s + 15·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 2.64·7-s − 1/3·9-s + 0.832·13-s − 0.516·15-s − 0.970·17-s + 1.83·19-s + 3.05·21-s + 1.87·23-s − 9/5·25-s − 1.34·27-s − 1.67·29-s + 3.05·31-s − 1.18·35-s − 0.493·37-s + 0.960·39-s − 2.49·41-s − 0.609·43-s + 0.149·45-s + 1.60·47-s + 18/7·49-s − 1.12·51-s − 0.412·53-s + 2.11·57-s − 0.260·59-s + 1.92·61-s + ⋯

Functional equation

Λ(s)=(25934336s/2ΓC(s)3L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 25934336 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(25934336s/2ΓC(s+1/2)3L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25934336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 66
Conductor: 2593433625934336    =    293732^{9} \cdot 37^{3}
Sign: 11
Analytic conductor: 13.204013.2040
Root analytic conductor: 1.537391.53739
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (6, 25934336, ( :1/2,1/2,1/2), 1)(6,\ 25934336,\ (\ :1/2, 1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 3.2581910183.258191018
L(12)L(\frac12) \approx 3.2581910183.258191018
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
37C1C_1 (1+T)3 ( 1 + T )^{3}
good3S4×C2S_4\times C_2 12T+5T25T3+5pT42p2T5+p3T6 1 - 2 T + 5 T^{2} - 5 T^{3} + 5 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6}
5S4×C2S_4\times C_2 1+T+2pT2+12T3+2p2T4+p2T5+p3T6 1 + T + 2 p T^{2} + 12 T^{3} + 2 p^{2} T^{4} + p^{2} T^{5} + p^{3} T^{6}
7S4×C2S_4\times C_2 1pT+31T294T3+31pT4p3T5+p3T6 1 - p T + 31 T^{2} - 94 T^{3} + 31 p T^{4} - p^{3} T^{5} + p^{3} T^{6}
11S4×C2S_4\times C_2 13T2+27T33pT4+p3T6 1 - 3 T^{2} + 27 T^{3} - 3 p T^{4} + p^{3} T^{6}
13S4×C2S_4\times C_2 13T+6T216T3+6pT43p2T5+p3T6 1 - 3 T + 6 T^{2} - 16 T^{3} + 6 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6}
17S4×C2S_4\times C_2 1+4T+31T2+120T3+31pT4+4p2T5+p3T6 1 + 4 T + 31 T^{2} + 120 T^{3} + 31 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6}
19S4×C2S_4\times C_2 18T+53T2240T3+53pT48p2T5+p3T6 1 - 8 T + 53 T^{2} - 240 T^{3} + 53 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6}
23S4×C2S_4\times C_2 19T+4pT2428T3+4p2T49p2T5+p3T6 1 - 9 T + 4 p T^{2} - 428 T^{3} + 4 p^{2} T^{4} - 9 p^{2} T^{5} + p^{3} T^{6}
29S4×C2S_4\times C_2 1+9T+110T2+536T3+110pT4+9p2T5+p3T6 1 + 9 T + 110 T^{2} + 536 T^{3} + 110 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6}
31S4×C2S_4\times C_2 117T+184T21202T3+184pT417p2T5+p3T6 1 - 17 T + 184 T^{2} - 1202 T^{3} + 184 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6}
41S4×C2S_4\times C_2 1+16T+193T2+1359T3+193pT4+16p2T5+p3T6 1 + 16 T + 193 T^{2} + 1359 T^{3} + 193 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6}
43S4×C2S_4\times C_2 1+4T+9T2+112T3+9pT4+4p2T5+p3T6 1 + 4 T + 9 T^{2} + 112 T^{3} + 9 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6}
47S4×C2S_4\times C_2 111T+131T21030T3+131pT411p2T5+p3T6 1 - 11 T + 131 T^{2} - 1030 T^{3} + 131 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6}
53S4×C2S_4\times C_2 1+3T+59T2+610T3+59pT4+3p2T5+p3T6 1 + 3 T + 59 T^{2} + 610 T^{3} + 59 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6}
59S4×C2S_4\times C_2 1+2T+53T2+220T3+53pT4+2p2T5+p3T6 1 + 2 T + 53 T^{2} + 220 T^{3} + 53 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6}
61S4×C2S_4\times C_2 115T+212T21778T3+212pT415p2T5+p3T6 1 - 15 T + 212 T^{2} - 1778 T^{3} + 212 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6}
67S4×C2S_4\times C_2 1+5T+22T2274T3+22pT4+5p2T5+p3T6 1 + 5 T + 22 T^{2} - 274 T^{3} + 22 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6}
71S4×C2S_4\times C_2 1+5T+189T2+714T3+189pT4+5p2T5+p3T6 1 + 5 T + 189 T^{2} + 714 T^{3} + 189 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6}
73S4×C2S_4\times C_2 1+6T+195T2+839T3+195pT4+6p2T5+p3T6 1 + 6 T + 195 T^{2} + 839 T^{3} + 195 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6}
79S4×C2S_4\times C_2 1+T+218T2+126T3+218pT4+p2T5+p3T6 1 + T + 218 T^{2} + 126 T^{3} + 218 p T^{4} + p^{2} T^{5} + p^{3} T^{6}
83S4×C2S_4\times C_2 1+9T+173T2+1606T3+173pT4+9p2T5+p3T6 1 + 9 T + 173 T^{2} + 1606 T^{3} + 173 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6}
89S4×C2S_4\times C_2 116T+3pT22784T3+3p2T416p2T5+p3T6 1 - 16 T + 3 p T^{2} - 2784 T^{3} + 3 p^{2} T^{4} - 16 p^{2} T^{5} + p^{3} T^{6}
97S4×C2S_4\times C_2 1+47T2+256T3+47pT4+p3T6 1 + 47 T^{2} + 256 T^{3} + 47 p T^{4} + p^{3} T^{6}
show more
show less
   L(s)=p j=16(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.50667674794395328904484860416, −10.24559456423596935575688897165, −9.844634532495756245168498798666, −9.547408148510392708352804041462, −8.869996196977424984266331586994, −8.863899326492502878201953865086, −8.627342280285411058871019505602, −8.293683295342721729660434166900, −7.88637576847425579767411056500, −7.83502155766063885308161734339, −7.46566984707687402433081972410, −7.01388337253448340997932032971, −6.71769660084259130592038541006, −6.07682723621157549923626312270, −5.54008877409685999977956279070, −5.46159198185251203645560997923, −4.86530737922999155740176177980, −4.63674996738275428236758451517, −4.27208244246088495069323457097, −3.56361983012300239336936775696, −3.34243059582778935043951132583, −2.84942306405856913627278075228, −2.14416178081521092823242555565, −1.75209515526012064562747615162, −1.12037709954869759125968838726, 1.12037709954869759125968838726, 1.75209515526012064562747615162, 2.14416178081521092823242555565, 2.84942306405856913627278075228, 3.34243059582778935043951132583, 3.56361983012300239336936775696, 4.27208244246088495069323457097, 4.63674996738275428236758451517, 4.86530737922999155740176177980, 5.46159198185251203645560997923, 5.54008877409685999977956279070, 6.07682723621157549923626312270, 6.71769660084259130592038541006, 7.01388337253448340997932032971, 7.46566984707687402433081972410, 7.83502155766063885308161734339, 7.88637576847425579767411056500, 8.293683295342721729660434166900, 8.627342280285411058871019505602, 8.863899326492502878201953865086, 8.869996196977424984266331586994, 9.547408148510392708352804041462, 9.844634532495756245168498798666, 10.24559456423596935575688897165, 10.50667674794395328904484860416

Graph of the ZZ-function along the critical line