Properties

Label 6-2888e3-1.1-c1e3-0-3
Degree $6$
Conductor $24087491072$
Sign $-1$
Analytic cond. $12263.7$
Root an. cond. $4.80216$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s − 6·7-s + 6·9-s − 6·11-s + 9·15-s − 6·17-s + 18·21-s + 6·23-s − 6·25-s − 10·27-s + 15·29-s − 3·31-s + 18·33-s + 18·35-s + 12·37-s + 6·43-s − 18·45-s + 6·49-s + 18·51-s − 18·53-s + 18·55-s − 9·59-s − 15·61-s − 36·63-s + 6·67-s − 18·69-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s − 2.26·7-s + 2·9-s − 1.80·11-s + 2.32·15-s − 1.45·17-s + 3.92·21-s + 1.25·23-s − 6/5·25-s − 1.92·27-s + 2.78·29-s − 0.538·31-s + 3.13·33-s + 3.04·35-s + 1.97·37-s + 0.914·43-s − 2.68·45-s + 6/7·49-s + 2.52·51-s − 2.47·53-s + 2.42·55-s − 1.17·59-s − 1.92·61-s − 4.53·63-s + 0.733·67-s − 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 19^{6}\)
Sign: $-1$
Analytic conductor: \(12263.7\)
Root analytic conductor: \(4.80216\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{9} \cdot 19^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 \)
good3$A_4\times C_2$ \( 1 + p T + p T^{2} + T^{3} + p^{2} T^{4} + p^{3} T^{5} + p^{3} T^{6} \) 3.3.d_d_b
5$A_4\times C_2$ \( 1 + 3 T + 3 p T^{2} + 27 T^{3} + 3 p^{2} T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \) 3.5.d_p_bb
7$A_4\times C_2$ \( 1 + 6 T + 30 T^{2} + 87 T^{3} + 30 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.7.g_be_dj
11$A_4\times C_2$ \( 1 + 6 T + 42 T^{2} + 133 T^{3} + 42 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.11.g_bq_fd
13$A_4\times C_2$ \( 1 + 18 T^{2} - 17 T^{3} + 18 p T^{4} + p^{3} T^{6} \) 3.13.a_s_ar
17$A_4\times C_2$ \( 1 + 6 T + 36 T^{2} + 185 T^{3} + 36 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.17.g_bk_hd
23$A_4\times C_2$ \( 1 - 6 T + 45 T^{2} - 140 T^{3} + 45 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.23.ag_bt_afk
29$A_4\times C_2$ \( 1 - 15 T + 159 T^{2} - 981 T^{3} + 159 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \) 3.29.ap_gd_ablt
31$A_4\times C_2$ \( 1 + 3 T + 69 T^{2} + 133 T^{3} + 69 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \) 3.31.d_cr_fd
37$A_4\times C_2$ \( 1 - 12 T + 150 T^{2} - 907 T^{3} + 150 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \) 3.37.am_fu_abix
41$A_4\times C_2$ \( 1 + 48 T^{2} - 125 T^{3} + 48 p T^{4} + p^{3} T^{6} \) 3.41.a_bw_aev
43$A_4\times C_2$ \( 1 - 6 T + 102 T^{2} - 427 T^{3} + 102 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.43.ag_dy_aql
47$A_4\times C_2$ \( 1 + 102 T^{2} + 89 T^{3} + 102 p T^{4} + p^{3} T^{6} \) 3.47.a_dy_dl
53$A_4\times C_2$ \( 1 + 18 T + 186 T^{2} + 1395 T^{3} + 186 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \) 3.53.s_he_cbr
59$A_4\times C_2$ \( 1 + 9 T + 120 T^{2} + 541 T^{3} + 120 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \) 3.59.j_eq_uv
61$A_4\times C_2$ \( 1 + 15 T + 210 T^{2} + 1651 T^{3} + 210 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \) 3.61.p_ic_cln
67$A_4\times C_2$ \( 1 - 6 T - 39 T^{2} + 1060 T^{3} - 39 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.67.ag_abn_bou
71$A_4\times C_2$ \( 1 - 6 T - 27 T^{2} + 1012 T^{3} - 27 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.71.ag_abb_bmy
73$A_4\times C_2$ \( 1 + 75 T^{2} + 576 T^{3} + 75 p T^{4} + p^{3} T^{6} \) 3.73.a_cx_we
79$A_4\times C_2$ \( 1 - 21 T + 321 T^{2} - 3391 T^{3} + 321 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} \) 3.79.av_mj_afal
83$A_4\times C_2$ \( 1 + 12 T + 294 T^{2} + 2045 T^{3} + 294 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \) 3.83.m_li_dar
89$A_4\times C_2$ \( 1 - 15 T + 321 T^{2} - 2727 T^{3} + 321 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \) 3.89.ap_mj_aeax
97$A_4\times C_2$ \( 1 - 21 T + 402 T^{2} - 4093 T^{3} + 402 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} \) 3.97.av_pm_agbl
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.165825996533120381004533625112, −7.66771165971377169882993394206, −7.65322276815200665295603517871, −7.41913072303918237946131865531, −7.17209935479662508354608376019, −6.65706961362532692084811101056, −6.46629723713251312982080041924, −6.34348919287883573642103803432, −6.26123061165351441514478160313, −6.08514423385117476452260731951, −5.54608864784582521472175667019, −5.29771711631864362201101297493, −4.98436393272257365946456769140, −4.65708652413809832592916483116, −4.60146940775065241963721786535, −4.35857479346081744042476748639, −3.80289808970907939468973341004, −3.62945736263725863025645023026, −3.40631347002566547068377528484, −2.75317411359468363673634007767, −2.69912018669026324762169800580, −2.61121391180836378220404653151, −1.86424175406958215066630692768, −1.23937457787683583822921354658, −0.840673988290036197681387588239, 0, 0, 0, 0.840673988290036197681387588239, 1.23937457787683583822921354658, 1.86424175406958215066630692768, 2.61121391180836378220404653151, 2.69912018669026324762169800580, 2.75317411359468363673634007767, 3.40631347002566547068377528484, 3.62945736263725863025645023026, 3.80289808970907939468973341004, 4.35857479346081744042476748639, 4.60146940775065241963721786535, 4.65708652413809832592916483116, 4.98436393272257365946456769140, 5.29771711631864362201101297493, 5.54608864784582521472175667019, 6.08514423385117476452260731951, 6.26123061165351441514478160313, 6.34348919287883573642103803432, 6.46629723713251312982080041924, 6.65706961362532692084811101056, 7.17209935479662508354608376019, 7.41913072303918237946131865531, 7.65322276815200665295603517871, 7.66771165971377169882993394206, 8.165825996533120381004533625112

Graph of the $Z$-function along the critical line