Properties

Label 6-26e3-1.1-c9e3-0-1
Degree $6$
Conductor $17576$
Sign $1$
Analytic cond. $2401.22$
Root an. cond. $3.65936$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 48·2-s + 156·3-s + 1.53e3·4-s − 1.27e3·5-s + 7.48e3·6-s + 1.70e4·7-s + 4.09e4·8-s + 3.78e3·9-s − 6.10e4·10-s + 7.39e4·11-s + 2.39e5·12-s − 8.56e4·13-s + 8.18e5·14-s − 1.98e5·15-s + 9.83e5·16-s + 3.74e5·17-s + 1.81e5·18-s + 4.18e5·19-s − 1.95e6·20-s + 2.66e6·21-s + 3.55e6·22-s + 1.02e6·23-s + 6.38e6·24-s − 4.52e5·25-s − 4.11e6·26-s − 2.93e5·27-s + 2.62e7·28-s + ⋯
L(s)  = 1  + 2.12·2-s + 1.11·3-s + 3·4-s − 0.910·5-s + 2.35·6-s + 2.68·7-s + 3.53·8-s + 0.192·9-s − 1.93·10-s + 1.52·11-s + 3.33·12-s − 0.832·13-s + 5.69·14-s − 1.01·15-s + 15/4·16-s + 1.08·17-s + 0.407·18-s + 0.736·19-s − 2.73·20-s + 2.98·21-s + 3.23·22-s + 0.764·23-s + 3.93·24-s − 0.231·25-s − 1.76·26-s − 0.106·27-s + 8.05·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17576 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17576 ^{s/2} \, \Gamma_{\C}(s+9/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(17576\)    =    \(2^{3} \cdot 13^{3}\)
Sign: $1$
Analytic conductor: \(2401.22\)
Root analytic conductor: \(3.65936\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 17576,\ (\ :9/2, 9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(30.87980167\)
\(L(\frac12)\) \(\approx\) \(30.87980167\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{4} T )^{3} \)
13$C_1$ \( ( 1 + p^{4} T )^{3} \)
good3$S_4\times C_2$ \( 1 - 52 p T + 2284 p^{2} T^{2} - 86072 p^{3} T^{3} + 2284 p^{11} T^{4} - 52 p^{19} T^{5} + p^{27} T^{6} \)
5$S_4\times C_2$ \( 1 + 1272 T + 2070036 T^{2} + 393966854 p T^{3} + 2070036 p^{9} T^{4} + 1272 p^{18} T^{5} + p^{27} T^{6} \)
7$S_4\times C_2$ \( 1 - 17058 T + 26151072 p T^{2} - 188573075434 p T^{3} + 26151072 p^{10} T^{4} - 17058 p^{18} T^{5} + p^{27} T^{6} \)
11$S_4\times C_2$ \( 1 - 73974 T + 2778732765 T^{2} - 44497153312780 T^{3} + 2778732765 p^{9} T^{4} - 73974 p^{18} T^{5} + p^{27} T^{6} \)
17$S_4\times C_2$ \( 1 - 374976 T + 378452421528 T^{2} - 86535045026636022 T^{3} + 378452421528 p^{9} T^{4} - 374976 p^{18} T^{5} + p^{27} T^{6} \)
19$S_4\times C_2$ \( 1 - 418338 T + 678538095285 T^{2} - 294307734083078340 T^{3} + 678538095285 p^{9} T^{4} - 418338 p^{18} T^{5} + p^{27} T^{6} \)
23$S_4\times C_2$ \( 1 - 44616 p T + 4031709543477 T^{2} - 2277298243304136464 T^{3} + 4031709543477 p^{9} T^{4} - 44616 p^{19} T^{5} + p^{27} T^{6} \)
29$S_4\times C_2$ \( 1 + 3075834 T + 33419160920259 T^{2} + 58301045097658242844 T^{3} + 33419160920259 p^{9} T^{4} + 3075834 p^{18} T^{5} + p^{27} T^{6} \)
31$S_4\times C_2$ \( 1 - 9286482 T + 43584325295901 T^{2} - \)\(12\!\cdots\!48\)\( T^{3} + 43584325295901 p^{9} T^{4} - 9286482 p^{18} T^{5} + p^{27} T^{6} \)
37$S_4\times C_2$ \( 1 + 17647776 T + 422551891884468 T^{2} + \)\(12\!\cdots\!86\)\( p T^{3} + 422551891884468 p^{9} T^{4} + 17647776 p^{18} T^{5} + p^{27} T^{6} \)
41$S_4\times C_2$ \( 1 + 47257110 T + 1622226515041563 T^{2} + \)\(32\!\cdots\!20\)\( T^{3} + 1622226515041563 p^{9} T^{4} + 47257110 p^{18} T^{5} + p^{27} T^{6} \)
43$S_4\times C_2$ \( 1 + 60023760 T + 2518841308328124 T^{2} + \)\(63\!\cdots\!60\)\( T^{3} + 2518841308328124 p^{9} T^{4} + 60023760 p^{18} T^{5} + p^{27} T^{6} \)
47$S_4\times C_2$ \( 1 + 40824726 T + 3473474836314168 T^{2} + \)\(85\!\cdots\!22\)\( T^{3} + 3473474836314168 p^{9} T^{4} + 40824726 p^{18} T^{5} + p^{27} T^{6} \)
53$S_4\times C_2$ \( 1 - 8072046 T + 660804482335551 T^{2} + \)\(30\!\cdots\!36\)\( T^{3} + 660804482335551 p^{9} T^{4} - 8072046 p^{18} T^{5} + p^{27} T^{6} \)
59$S_4\times C_2$ \( 1 - 138035310 T + 23544326414292237 T^{2} - \)\(17\!\cdots\!80\)\( T^{3} + 23544326414292237 p^{9} T^{4} - 138035310 p^{18} T^{5} + p^{27} T^{6} \)
61$S_4\times C_2$ \( 1 - 264203886 T + 55185039025738935 T^{2} - \)\(65\!\cdots\!40\)\( T^{3} + 55185039025738935 p^{9} T^{4} - 264203886 p^{18} T^{5} + p^{27} T^{6} \)
67$S_4\times C_2$ \( 1 - 203167074 T + 11045547237099813 T^{2} - \)\(71\!\cdots\!08\)\( T^{3} + 11045547237099813 p^{9} T^{4} - 203167074 p^{18} T^{5} + p^{27} T^{6} \)
71$S_4\times C_2$ \( 1 - 123067110 T + 95038593276035448 T^{2} - \)\(13\!\cdots\!70\)\( T^{3} + 95038593276035448 p^{9} T^{4} - 123067110 p^{18} T^{5} + p^{27} T^{6} \)
73$S_4\times C_2$ \( 1 + 433013250 T + 184996030152367959 T^{2} + \)\(44\!\cdots\!00\)\( T^{3} + 184996030152367959 p^{9} T^{4} + 433013250 p^{18} T^{5} + p^{27} T^{6} \)
79$S_4\times C_2$ \( 1 - 406418748 T - 6408821024487075 T^{2} + \)\(51\!\cdots\!80\)\( T^{3} - 6408821024487075 p^{9} T^{4} - 406418748 p^{18} T^{5} + p^{27} T^{6} \)
83$S_4\times C_2$ \( 1 - 105365610 T + 274290745881973209 T^{2} + \)\(14\!\cdots\!40\)\( T^{3} + 274290745881973209 p^{9} T^{4} - 105365610 p^{18} T^{5} + p^{27} T^{6} \)
89$S_4\times C_2$ \( 1 - 1365375798 T + 1535126512833912615 T^{2} - \)\(10\!\cdots\!80\)\( T^{3} + 1535126512833912615 p^{9} T^{4} - 1365375798 p^{18} T^{5} + p^{27} T^{6} \)
97$S_4\times C_2$ \( 1 - 669691662 T + 2079640297453933599 T^{2} - \)\(10\!\cdots\!72\)\( T^{3} + 2079640297453933599 p^{9} T^{4} - 669691662 p^{18} T^{5} + p^{27} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09608740655576413427351920610, −13.30916462258319402621133614747, −13.17042006463907150093165583249, −12.18542563286740613441891397132, −11.74426485930354517952432725776, −11.72121643594694407665657597751, −11.63317550986234936906998739574, −11.02457257974585874400892714978, −10.01137448474895768068270841404, −10.00351134446347953848748770680, −8.765180152378539314120936209563, −8.226121991309560324682467827931, −8.187495588100124948500267043616, −7.58834681285322131875642754176, −6.83862118865833794464806274186, −6.71549113291660741542005804989, −5.37758605401187071670608207917, −5.03915247665482653560310856420, −4.85246768591779478963194471394, −4.05200569128137294835610265933, −3.34582053097380242518917170494, −3.31099108046416242459972015361, −1.98865148009664826600856808029, −1.77943665152290458193534898090, −1.01716492383021255831880708701, 1.01716492383021255831880708701, 1.77943665152290458193534898090, 1.98865148009664826600856808029, 3.31099108046416242459972015361, 3.34582053097380242518917170494, 4.05200569128137294835610265933, 4.85246768591779478963194471394, 5.03915247665482653560310856420, 5.37758605401187071670608207917, 6.71549113291660741542005804989, 6.83862118865833794464806274186, 7.58834681285322131875642754176, 8.187495588100124948500267043616, 8.226121991309560324682467827931, 8.765180152378539314120936209563, 10.00351134446347953848748770680, 10.01137448474895768068270841404, 11.02457257974585874400892714978, 11.63317550986234936906998739574, 11.72121643594694407665657597751, 11.74426485930354517952432725776, 12.18542563286740613441891397132, 13.17042006463907150093165583249, 13.30916462258319402621133614747, 14.09608740655576413427351920610

Graph of the $Z$-function along the critical line