Properties

Label 6-2175e3-87.86-c0e3-0-1
Degree $6$
Conductor $10289109375$
Sign $1$
Analytic cond. $1.27893$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s + 3·29-s − 3·41-s + 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s + 3·29-s − 3·41-s + 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 29^{3}\)
Sign: $1$
Analytic conductor: \(1.27893\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2175} (1826, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 29^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5229048140\)
\(L(\frac12)\) \(\approx\) \(0.5229048140\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{3} \)
5 \( 1 \)
29$C_1$ \( ( 1 - T )^{3} \)
good2$C_6$ \( 1 - T^{3} + T^{6} \)
7$C_6$ \( 1 - T^{3} + T^{6} \)
11$C_6$ \( 1 + T^{3} + T^{6} \)
13$C_6$ \( 1 - T^{3} + T^{6} \)
17$C_6$ \( 1 - T^{3} + T^{6} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_2$ \( ( 1 + T + T^{2} )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_6$ \( 1 - T^{3} + T^{6} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 - T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 + T^{3} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.292539683389288985112163405555, −7.71621506664115351524724123027, −7.68448898919329146098893357109, −7.28625155324289672698272817718, −6.99658498534019354268492847128, −6.91906838436844395268577660582, −6.57361497476501462714389800745, −6.33749050401458408994139787064, −6.07897706859304921688609895872, −6.06636784162407590066444391644, −5.37791348032863760307696527283, −5.26844723531087514107282166394, −5.05295758961349030166920206413, −4.83731914147215123808324809836, −4.53080275361845858840565894443, −4.35136885190179736969885903481, −4.02100546134468548233210777415, −3.69950209953707938992029285562, −3.13302973908668216888296534943, −2.98179984216700250557221153793, −2.06303999472383132311104479016, −1.93003054497361431391125367017, −1.47579939597712814270817544533, −1.05380231752988230136180855778, −0.62600961268415776705364245821, 0.62600961268415776705364245821, 1.05380231752988230136180855778, 1.47579939597712814270817544533, 1.93003054497361431391125367017, 2.06303999472383132311104479016, 2.98179984216700250557221153793, 3.13302973908668216888296534943, 3.69950209953707938992029285562, 4.02100546134468548233210777415, 4.35136885190179736969885903481, 4.53080275361845858840565894443, 4.83731914147215123808324809836, 5.05295758961349030166920206413, 5.26844723531087514107282166394, 5.37791348032863760307696527283, 6.06636784162407590066444391644, 6.07897706859304921688609895872, 6.33749050401458408994139787064, 6.57361497476501462714389800745, 6.91906838436844395268577660582, 6.99658498534019354268492847128, 7.28625155324289672698272817718, 7.68448898919329146098893357109, 7.71621506664115351524724123027, 8.292539683389288985112163405555

Graph of the $Z$-function along the critical line