L(s) = 1 | − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s + 3·29-s − 3·41-s + 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | − 3·3-s + 8-s + 6·9-s − 3·24-s − 10·27-s + 3·29-s − 3·41-s + 6·72-s + 15·81-s − 9·87-s + 3·103-s + 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
Λ(s)=(=((33⋅56⋅293)s/2ΓC(s)3L(s)Λ(1−s)
Λ(s)=(=((33⋅56⋅293)s/2ΓC(s)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅293
|
Sign: |
1
|
Analytic conductor: |
1.27893 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ2175(1826,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅293, ( :0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.5229048140 |
L(21) |
≈ |
0.5229048140 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)3 |
| 5 | | 1 |
| 29 | C1 | (1−T)3 |
good | 2 | C6 | 1−T3+T6 |
| 7 | C6 | 1−T3+T6 |
| 11 | C6 | 1+T3+T6 |
| 13 | C6 | 1−T3+T6 |
| 17 | C6 | 1−T3+T6 |
| 19 | C1×C1 | (1−T)3(1+T)3 |
| 23 | C1×C1 | (1−T)3(1+T)3 |
| 31 | C1×C1 | (1−T)3(1+T)3 |
| 37 | C1×C1 | (1−T)3(1+T)3 |
| 41 | C2 | (1+T+T2)3 |
| 43 | C1×C1 | (1−T)3(1+T)3 |
| 47 | C6 | 1−T3+T6 |
| 53 | C1×C1 | (1−T)3(1+T)3 |
| 59 | C1×C1 | (1−T)3(1+T)3 |
| 61 | C1×C1 | (1−T)3(1+T)3 |
| 67 | C6 | 1−T3+T6 |
| 71 | C1×C1 | (1−T)3(1+T)3 |
| 73 | C1×C1 | (1−T)3(1+T)3 |
| 79 | C1×C1 | (1−T)3(1+T)3 |
| 83 | C1×C1 | (1−T)3(1+T)3 |
| 89 | C6 | 1+T3+T6 |
| 97 | C1×C1 | (1−T)3(1+T)3 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.292539683389288985112163405555, −7.71621506664115351524724123027, −7.68448898919329146098893357109, −7.28625155324289672698272817718, −6.99658498534019354268492847128, −6.91906838436844395268577660582, −6.57361497476501462714389800745, −6.33749050401458408994139787064, −6.07897706859304921688609895872, −6.06636784162407590066444391644, −5.37791348032863760307696527283, −5.26844723531087514107282166394, −5.05295758961349030166920206413, −4.83731914147215123808324809836, −4.53080275361845858840565894443, −4.35136885190179736969885903481, −4.02100546134468548233210777415, −3.69950209953707938992029285562, −3.13302973908668216888296534943, −2.98179984216700250557221153793, −2.06303999472383132311104479016, −1.93003054497361431391125367017, −1.47579939597712814270817544533, −1.05380231752988230136180855778, −0.62600961268415776705364245821,
0.62600961268415776705364245821, 1.05380231752988230136180855778, 1.47579939597712814270817544533, 1.93003054497361431391125367017, 2.06303999472383132311104479016, 2.98179984216700250557221153793, 3.13302973908668216888296534943, 3.69950209953707938992029285562, 4.02100546134468548233210777415, 4.35136885190179736969885903481, 4.53080275361845858840565894443, 4.83731914147215123808324809836, 5.05295758961349030166920206413, 5.26844723531087514107282166394, 5.37791348032863760307696527283, 6.06636784162407590066444391644, 6.07897706859304921688609895872, 6.33749050401458408994139787064, 6.57361497476501462714389800745, 6.91906838436844395268577660582, 6.99658498534019354268492847128, 7.28625155324289672698272817718, 7.68448898919329146098893357109, 7.71621506664115351524724123027, 8.292539683389288985112163405555