L(s) = 1 | − 5·2-s + 7·4-s − 8·5-s − 8·7-s + 9·8-s + 40·10-s − 34·11-s + 36·13-s + 40·14-s − 85·16-s − 51·17-s − 142·19-s − 56·20-s + 170·22-s − 110·23-s − 252·25-s − 180·26-s − 56·28-s − 90·29-s − 148·31-s + 341·32-s + 255·34-s + 64·35-s + 110·37-s + 710·38-s − 72·40-s − 720·41-s + ⋯ |
L(s) = 1 | − 1.76·2-s + 7/8·4-s − 0.715·5-s − 0.431·7-s + 0.397·8-s + 1.26·10-s − 0.931·11-s + 0.768·13-s + 0.763·14-s − 1.32·16-s − 0.727·17-s − 1.71·19-s − 0.626·20-s + 1.64·22-s − 0.997·23-s − 2.01·25-s − 1.35·26-s − 0.377·28-s − 0.576·29-s − 0.857·31-s + 1.88·32-s + 1.28·34-s + 0.309·35-s + 0.488·37-s + 3.03·38-s − 0.284·40-s − 2.74·41-s + ⋯ |
Λ(s)=(=(3581577s/2ΓC(s)3L(s)−Λ(4−s)
Λ(s)=(=(3581577s/2ΓC(s+3/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
3581577
= 36⋅173
|
Sign: |
−1
|
Analytic conductor: |
735.652 |
Root analytic conductor: |
3.00454 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 3581577, ( :3/2,3/2,3/2), −1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 17 | C1 | (1+pT)3 |
good | 2 | S4×C2 | 1+5T+9pT2+23pT3+9p4T4+5p6T5+p9T6 |
| 5 | S4×C2 | 1+8T+316T2+1534T3+316p3T4+8p6T5+p9T6 |
| 7 | S4×C2 | 1+8T+51pT2+7792T3+51p4T4+8p6T5+p9T6 |
| 11 | S4×C2 | 1+34T+2450T2+99472T3+2450p3T4+34p6T5+p9T6 |
| 13 | S4×C2 | 1−36T+1060T2−35486T3+1060p3T4−36p6T5+p9T6 |
| 19 | S4×C2 | 1+142T+24690T2+1956200T3+24690p3T4+142p6T5+p9T6 |
| 23 | S4×C2 | 1+110T+30814T2+2729980T3+30814p3T4+110p6T5+p9T6 |
| 29 | S4×C2 | 1+90T+36139T2+4805340T3+36139p3T4+90p6T5+p9T6 |
| 31 | S4×C2 | 1+148T+82401T2+8177688T3+82401p3T4+148p6T5+p9T6 |
| 37 | S4×C2 | 1−110T+71031T2−17113452T3+71031p3T4−110p6T5+p9T6 |
| 41 | S4×C2 | 1+720T+366208T2+109686282T3+366208p3T4+720p6T5+p9T6 |
| 43 | S4×C2 | 1+146T−40182T2−39408872T3−40182p3T4+146p6T5+p9T6 |
| 47 | S4×C2 | 1+500T+217553T2+73350104T3+217553p3T4+500p6T5+p9T6 |
| 53 | S4×C2 | 1+610T+340931T2+101182252T3+340931p3T4+610p6T5+p9T6 |
| 59 | S4×C2 | 1−216T+576349T2−90026112T3+576349p3T4−216p6T5+p9T6 |
| 61 | S4×C2 | 1+18T+539791T2+16298516T3+539791p3T4+18p6T5+p9T6 |
| 67 | S4×C2 | 1+1404T+1477377T2+906611816T3+1477377p3T4+1404p6T5+p9T6 |
| 71 | S4×C2 | 1−960T+856597T2−459564544T3+856597p3T4−960p6T5+p9T6 |
| 73 | S4×C2 | 1+794T+908231T2+390276652T3+908231p3T4+794p6T5+p9T6 |
| 79 | S4×C2 | 1+276T+332913T2+51343320T3+332913p3T4+276p6T5+p9T6 |
| 83 | S4×C2 | 1−1552T+2256501T2−1786088240T3+2256501p3T4−1552p6T5+p9T6 |
| 89 | S4×C2 | 1+1394T+2215963T2+1686994660T3+2215963p3T4+1394p6T5+p9T6 |
| 97 | S4×C2 | 1−402T+119587T2+1292278940T3+119587p3T4−402p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65644661908976076971321866031, −11.21163196919064666561215266294, −10.96965997318068539077218433579, −10.50400401685843674619413223268, −10.16420266429647573781039250093, −9.838401726963965250614617301965, −9.778701373800632889397996087190, −9.068366168463588903802152142660, −8.897996537578487955617633066410, −8.644243741732146534086964003420, −8.142182592671096268013463040669, −7.88229179255241623027027399994, −7.83474739392216022566928054928, −7.22694930000157491336706397957, −6.56917714299354251397802095120, −6.32754042281170777383415357055, −6.17627826640342648198481797484, −5.17720788170549705638842089984, −5.08004569547810011465154599049, −4.14971281380827279224524226351, −4.08902997194734833753093184761, −3.47203228415881083087051326614, −2.77838577401269894070988374506, −1.80764492040638991603309607579, −1.75646561566549658193007977758, 0, 0, 0,
1.75646561566549658193007977758, 1.80764492040638991603309607579, 2.77838577401269894070988374506, 3.47203228415881083087051326614, 4.08902997194734833753093184761, 4.14971281380827279224524226351, 5.08004569547810011465154599049, 5.17720788170549705638842089984, 6.17627826640342648198481797484, 6.32754042281170777383415357055, 6.56917714299354251397802095120, 7.22694930000157491336706397957, 7.83474739392216022566928054928, 7.88229179255241623027027399994, 8.142182592671096268013463040669, 8.644243741732146534086964003420, 8.897996537578487955617633066410, 9.068366168463588903802152142660, 9.778701373800632889397996087190, 9.838401726963965250614617301965, 10.16420266429647573781039250093, 10.50400401685843674619413223268, 10.96965997318068539077218433579, 11.21163196919064666561215266294, 11.65644661908976076971321866031