Properties

Label 6-1440e3-1.1-c3e3-0-3
Degree 66
Conductor 29859840002985984000
Sign 1-1
Analytic cond. 613317.613317.
Root an. cond. 9.217529.21752
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 33

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·5-s − 14·7-s − 22·11-s + 8·13-s + 34·17-s + 4·19-s − 176·23-s + 150·25-s − 98·29-s − 88·31-s − 210·35-s + 284·37-s + 8·41-s − 504·43-s − 280·47-s − 621·49-s + 150·53-s − 330·55-s − 350·59-s + 350·61-s + 120·65-s − 804·67-s − 500·71-s − 486·73-s + 308·77-s − 1.59e3·79-s + 684·83-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.755·7-s − 0.603·11-s + 0.170·13-s + 0.485·17-s + 0.0482·19-s − 1.59·23-s + 6/5·25-s − 0.627·29-s − 0.509·31-s − 1.01·35-s + 1.26·37-s + 0.0304·41-s − 1.78·43-s − 0.868·47-s − 1.81·49-s + 0.388·53-s − 0.809·55-s − 0.772·59-s + 0.734·61-s + 0.228·65-s − 1.46·67-s − 0.835·71-s − 0.779·73-s + 0.455·77-s − 2.26·79-s + 0.904·83-s + ⋯

Functional equation

Λ(s)=((2153653)s/2ΓC(s)3L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 3^{6} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(4-s)\end{aligned}
Λ(s)=((2153653)s/2ΓC(s+3/2)3L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 3^{6} \cdot 5^{3}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}

Invariants

Degree: 66
Conductor: 21536532^{15} \cdot 3^{6} \cdot 5^{3}
Sign: 1-1
Analytic conductor: 613317.613317.
Root analytic conductor: 9.217529.21752
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 33
Selberg data: (6, 2153653, ( :3/2,3/2,3/2), 1)(6,\ 2^{15} \cdot 3^{6} \cdot 5^{3} ,\ ( \ : 3/2, 3/2, 3/2 ),\ -1 )

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
5C1C_1 (1pT)3 ( 1 - p T )^{3}
good7S4×C2S_4\times C_2 1+2pT+817T2+9196T3+817p3T4+2p7T5+p9T6 1 + 2 p T + 817 T^{2} + 9196 T^{3} + 817 p^{3} T^{4} + 2 p^{7} T^{5} + p^{9} T^{6}
11S4×C2S_4\times C_2 1+2pT+2149T2+69196T3+2149p3T4+2p7T5+p9T6 1 + 2 p T + 2149 T^{2} + 69196 T^{3} + 2149 p^{3} T^{4} + 2 p^{7} T^{5} + p^{9} T^{6}
13S4×C2S_4\times C_2 18T+2127T2119632T3+2127p3T48p6T5+p9T6 1 - 8 T + 2127 T^{2} - 119632 T^{3} + 2127 p^{3} T^{4} - 8 p^{6} T^{5} + p^{9} T^{6}
17S4×C2S_4\times C_2 12pT+7951T2430972T3+7951p3T42p7T5+p9T6 1 - 2 p T + 7951 T^{2} - 430972 T^{3} + 7951 p^{3} T^{4} - 2 p^{7} T^{5} + p^{9} T^{6}
19S4×C2S_4\times C_2 14T+7649T2529240T3+7649p3T44p6T5+p9T6 1 - 4 T + 7649 T^{2} - 529240 T^{3} + 7649 p^{3} T^{4} - 4 p^{6} T^{5} + p^{9} T^{6}
23S4×C2S_4\times C_2 1+176T+35205T2+4252064T3+35205p3T4+176p6T5+p9T6 1 + 176 T + 35205 T^{2} + 4252064 T^{3} + 35205 p^{3} T^{4} + 176 p^{6} T^{5} + p^{9} T^{6}
29S4×C2S_4\times C_2 1+98T+24635T2+7058028T3+24635p3T4+98p6T5+p9T6 1 + 98 T + 24635 T^{2} + 7058028 T^{3} + 24635 p^{3} T^{4} + 98 p^{6} T^{5} + p^{9} T^{6}
31S4×C2S_4\times C_2 1+88T+52685T2+3535312T3+52685p3T4+88p6T5+p9T6 1 + 88 T + 52685 T^{2} + 3535312 T^{3} + 52685 p^{3} T^{4} + 88 p^{6} T^{5} + p^{9} T^{6}
37S4×C2S_4\times C_2 1284T+49559T213028696T3+49559p3T4284p6T5+p9T6 1 - 284 T + 49559 T^{2} - 13028696 T^{3} + 49559 p^{3} T^{4} - 284 p^{6} T^{5} + p^{9} T^{6}
41S4×C2S_4\times C_2 18T+121451T210434960T3+121451p3T48p6T5+p9T6 1 - 8 T + 121451 T^{2} - 10434960 T^{3} + 121451 p^{3} T^{4} - 8 p^{6} T^{5} + p^{9} T^{6}
43S4×C2S_4\times C_2 1+504T+174009T2+40942288T3+174009p3T4+504p6T5+p9T6 1 + 504 T + 174009 T^{2} + 40942288 T^{3} + 174009 p^{3} T^{4} + 504 p^{6} T^{5} + p^{9} T^{6}
47S4×C2S_4\times C_2 1+280T+115997T2+54406224T3+115997p3T4+280p6T5+p9T6 1 + 280 T + 115997 T^{2} + 54406224 T^{3} + 115997 p^{3} T^{4} + 280 p^{6} T^{5} + p^{9} T^{6}
53S4×C2S_4\times C_2 1150T+253683T244718980T3+253683p3T4150p6T5+p9T6 1 - 150 T + 253683 T^{2} - 44718980 T^{3} + 253683 p^{3} T^{4} - 150 p^{6} T^{5} + p^{9} T^{6}
59S4×C2S_4\times C_2 1+350T+202005T217161444T3+202005p3T4+350p6T5+p9T6 1 + 350 T + 202005 T^{2} - 17161444 T^{3} + 202005 p^{3} T^{4} + 350 p^{6} T^{5} + p^{9} T^{6}
61S4×C2S_4\times C_2 1350T+204635T2134954132T3+204635p3T4350p6T5+p9T6 1 - 350 T + 204635 T^{2} - 134954132 T^{3} + 204635 p^{3} T^{4} - 350 p^{6} T^{5} + p^{9} T^{6}
67S4×C2S_4\times C_2 1+12pT+1077441T2+489158232T3+1077441p3T4+12p7T5+p9T6 1 + 12 p T + 1077441 T^{2} + 489158232 T^{3} + 1077441 p^{3} T^{4} + 12 p^{7} T^{5} + p^{9} T^{6}
71S4×C2S_4\times C_2 1+500T+1072245T2+353953688T3+1072245p3T4+500p6T5+p9T6 1 + 500 T + 1072245 T^{2} + 353953688 T^{3} + 1072245 p^{3} T^{4} + 500 p^{6} T^{5} + p^{9} T^{6}
73S4×C2S_4\times C_2 1+486T+1084311T2+377044724T3+1084311p3T4+486p6T5+p9T6 1 + 486 T + 1084311 T^{2} + 377044724 T^{3} + 1084311 p^{3} T^{4} + 486 p^{6} T^{5} + p^{9} T^{6}
79S4×C2S_4\times C_2 1+1592T+2161789T2+1645964560T3+2161789p3T4+1592p6T5+p9T6 1 + 1592 T + 2161789 T^{2} + 1645964560 T^{3} + 2161789 p^{3} T^{4} + 1592 p^{6} T^{5} + p^{9} T^{6}
83S4×C2S_4\times C_2 1684T+1381713T2561532168T3+1381713p3T4684p6T5+p9T6 1 - 684 T + 1381713 T^{2} - 561532168 T^{3} + 1381713 p^{3} T^{4} - 684 p^{6} T^{5} + p^{9} T^{6}
89S4×C2S_4\times C_2 1668T+2135307T2937072184T3+2135307p3T4668p6T5+p9T6 1 - 668 T + 2135307 T^{2} - 937072184 T^{3} + 2135307 p^{3} T^{4} - 668 p^{6} T^{5} + p^{9} T^{6}
97S4×C2S_4\times C_2 1+1394T+2868623T2+2439375164T3+2868623p3T4+1394p6T5+p9T6 1 + 1394 T + 2868623 T^{2} + 2439375164 T^{3} + 2868623 p^{3} T^{4} + 1394 p^{6} T^{5} + p^{9} T^{6}
show more
show less
   L(s)=p j=16(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.530035457335660671347475402042, −8.171484469528509396851308363737, −8.061573897460417842583104908360, −7.67539048431542725388536399193, −7.36443228676133439221025434157, −7.24586793390817502779695517051, −6.72863856426024891884689082320, −6.45483993093291754260281462720, −6.24006443379490506803945415717, −6.13163026196531398169423075138, −5.66504569079821394804361970927, −5.59232907393231261345645768659, −5.18932707492727457907114223289, −4.90377693494979912030258726224, −4.49524381585693470399921055117, −4.37432028201329440639032848434, −3.58521276633886909727825683369, −3.55490218119831981143907248424, −3.39496139058713302190351582471, −2.56918487757764805390665128746, −2.50291738472753237903198838970, −2.42806249527417820001900267067, −1.43616967379359230042493228342, −1.42677167007891290358703017084, −1.33579470341932987631431728676, 0, 0, 0, 1.33579470341932987631431728676, 1.42677167007891290358703017084, 1.43616967379359230042493228342, 2.42806249527417820001900267067, 2.50291738472753237903198838970, 2.56918487757764805390665128746, 3.39496139058713302190351582471, 3.55490218119831981143907248424, 3.58521276633886909727825683369, 4.37432028201329440639032848434, 4.49524381585693470399921055117, 4.90377693494979912030258726224, 5.18932707492727457907114223289, 5.59232907393231261345645768659, 5.66504569079821394804361970927, 6.13163026196531398169423075138, 6.24006443379490506803945415717, 6.45483993093291754260281462720, 6.72863856426024891884689082320, 7.24586793390817502779695517051, 7.36443228676133439221025434157, 7.67539048431542725388536399193, 8.061573897460417842583104908360, 8.171484469528509396851308363737, 8.530035457335660671347475402042

Graph of the ZZ-function along the critical line