L(s) = 1 | − 2·2-s − 2·3-s + 2·4-s − 6·5-s + 4·6-s + 3·9-s + 12·10-s − 4·12-s + 12·15-s − 4·16-s − 2·17-s − 6·18-s − 19-s − 12·20-s + 17·25-s − 4·27-s − 24·30-s − 12·31-s + 8·32-s + 4·34-s + 6·36-s + 2·38-s − 18·45-s + 8·48-s + 11·49-s − 34·50-s + 4·51-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 4-s − 2.68·5-s + 1.63·6-s + 9-s + 3.79·10-s − 1.15·12-s + 3.09·15-s − 16-s − 0.485·17-s − 1.41·18-s − 0.229·19-s − 2.68·20-s + 17/5·25-s − 0.769·27-s − 4.38·30-s − 2.15·31-s + 1.41·32-s + 0.685·34-s + 36-s + 0.324·38-s − 2.68·45-s + 1.15·48-s + 11/7·49-s − 4.80·50-s + 0.560·51-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 987696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C1 | (1+T)2 |
| 19 | C1 | 1+T |
good | 5 | C2 | (1+3T+pT2)2 |
| 7 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 11 | C2 | (1−T+pT2)(1+T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+6T+pT2)2 |
| 37 | C2 | (1+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+8T+pT2)2 |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1+11T+pT2)2 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.48919464134144900735099782123, −7.47848778675296589128891353641, −7.27079151643991129277821474463, −6.41173993136661837405396202601, −6.25499216179811745555302525608, −5.36600607918508759890630649285, −4.89390739159963849894021052339, −4.42808617434113254239775941766, −3.81591641511052084615077615666, −3.79824334094358549621418265757, −2.80250883164613859029957691965, −1.86642316096709822967327164489, −1.02602590121900935054247645611, 0, 0,
1.02602590121900935054247645611, 1.86642316096709822967327164489, 2.80250883164613859029957691965, 3.79824334094358549621418265757, 3.81591641511052084615077615666, 4.42808617434113254239775941766, 4.89390739159963849894021052339, 5.36600607918508759890630649285, 6.25499216179811745555302525608, 6.41173993136661837405396202601, 7.27079151643991129277821474463, 7.47848778675296589128891353641, 7.48919464134144900735099782123