Properties

Label 4-987696-1.1-c1e2-0-7
Degree $4$
Conductor $987696$
Sign $-1$
Analytic cond. $62.9763$
Root an. cond. $2.81704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s + 3·13-s + 19-s + 3·25-s − 9·27-s − 12·31-s − 6·37-s − 9·39-s + 5·43-s − 5·49-s − 3·57-s + 17·61-s − 3·67-s + 9·73-s − 9·75-s − 9·79-s + 9·81-s + 36·93-s + 6·97-s − 6·109-s + 18·111-s + 18·117-s + 6·121-s + 127-s − 15·129-s + 131-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s + 0.832·13-s + 0.229·19-s + 3/5·25-s − 1.73·27-s − 2.15·31-s − 0.986·37-s − 1.44·39-s + 0.762·43-s − 5/7·49-s − 0.397·57-s + 2.17·61-s − 0.366·67-s + 1.05·73-s − 1.03·75-s − 1.01·79-s + 81-s + 3.73·93-s + 0.609·97-s − 0.574·109-s + 1.70·111-s + 1.66·117-s + 6/11·121-s + 0.0887·127-s − 1.32·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(987696\)    =    \(2^{4} \cdot 3^{2} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(62.9763\)
Root analytic conductor: \(2.81704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 987696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
19$C_1$ \( 1 - T \)
good5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 21 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - T + p T^{2} ) \)
47$C_2^2$ \( 1 - 63 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
59$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 57 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65478542993864032991661837675, −7.36028396690067987832949372847, −6.97962741649462758989451840867, −6.42454560680663576093867154103, −6.20130789958900120032074211076, −5.60043213822687702964922228729, −5.22610279522421829320276692403, −5.02175821113324799428203151522, −4.24507010736908696665397610267, −3.80392351122560825863494767467, −3.36903337610250286320755243958, −2.40344357012843977113173240461, −1.62531368494710710101103096307, −0.999909831714497685598503526662, 0, 0.999909831714497685598503526662, 1.62531368494710710101103096307, 2.40344357012843977113173240461, 3.36903337610250286320755243958, 3.80392351122560825863494767467, 4.24507010736908696665397610267, 5.02175821113324799428203151522, 5.22610279522421829320276692403, 5.60043213822687702964922228729, 6.20130789958900120032074211076, 6.42454560680663576093867154103, 6.97962741649462758989451840867, 7.36028396690067987832949372847, 7.65478542993864032991661837675

Graph of the $Z$-function along the critical line