L(s) = 1 | − 3·3-s + 6·9-s + 3·13-s + 19-s + 3·25-s − 9·27-s − 12·31-s − 6·37-s − 9·39-s + 5·43-s − 5·49-s − 3·57-s + 17·61-s − 3·67-s + 9·73-s − 9·75-s − 9·79-s + 9·81-s + 36·93-s + 6·97-s − 6·109-s + 18·111-s + 18·117-s + 6·121-s + 127-s − 15·129-s + 131-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 2·9-s + 0.832·13-s + 0.229·19-s + 3/5·25-s − 1.73·27-s − 2.15·31-s − 0.986·37-s − 1.44·39-s + 0.762·43-s − 5/7·49-s − 0.397·57-s + 2.17·61-s − 0.366·67-s + 1.05·73-s − 1.03·75-s − 1.01·79-s + 81-s + 3.73·93-s + 0.609·97-s − 0.574·109-s + 1.70·111-s + 1.66·117-s + 6/11·121-s + 0.0887·127-s − 1.32·129-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
−1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 987696, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT+pT2 |
| 19 | C1 | 1−T |
good | 5 | C22 | 1−3T2+p2T4 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−5T+pT2)(1+2T+pT2) |
| 17 | C22 | 1+29T2+p2T4 |
| 23 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 29 | C22 | 1−15T2+p2T4 |
| 31 | C2×C2 | (1+5T+pT2)(1+7T+pT2) |
| 37 | C2×C2 | (1−T+pT2)(1+7T+pT2) |
| 41 | C22 | 1+21T2+p2T4 |
| 43 | C2×C2 | (1−4T+pT2)(1−T+pT2) |
| 47 | C22 | 1−63T2+p2T4 |
| 53 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 59 | C22 | 1+T2+p2T4 |
| 61 | C2×C2 | (1−10T+pT2)(1−7T+pT2) |
| 67 | C2×C2 | (1−9T+pT2)(1+12T+pT2) |
| 71 | C22 | 1+57T2+p2T4 |
| 73 | C2×C2 | (1−15T+pT2)(1+6T+pT2) |
| 79 | C2×C2 | (1+T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1−15T+pT2)(1+15T+pT2) |
| 97 | C2×C2 | (1−13T+pT2)(1+7T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.65478542993864032991661837675, −7.36028396690067987832949372847, −6.97962741649462758989451840867, −6.42454560680663576093867154103, −6.20130789958900120032074211076, −5.60043213822687702964922228729, −5.22610279522421829320276692403, −5.02175821113324799428203151522, −4.24507010736908696665397610267, −3.80392351122560825863494767467, −3.36903337610250286320755243958, −2.40344357012843977113173240461, −1.62531368494710710101103096307, −0.999909831714497685598503526662, 0,
0.999909831714497685598503526662, 1.62531368494710710101103096307, 2.40344357012843977113173240461, 3.36903337610250286320755243958, 3.80392351122560825863494767467, 4.24507010736908696665397610267, 5.02175821113324799428203151522, 5.22610279522421829320276692403, 5.60043213822687702964922228729, 6.20130789958900120032074211076, 6.42454560680663576093867154103, 6.97962741649462758989451840867, 7.36028396690067987832949372847, 7.65478542993864032991661837675