L(s) = 1 | + 2-s + 2·3-s − 4-s + 5·5-s + 2·6-s − 3·8-s + 3·9-s + 5·10-s − 2·12-s + 10·15-s − 16-s − 3·17-s + 3·18-s − 19-s − 5·20-s − 6·24-s + 11·25-s + 4·27-s + 10·30-s + 7·31-s + 5·32-s − 3·34-s − 3·36-s − 38-s − 15·40-s + 15·45-s − 2·48-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s − 1/2·4-s + 2.23·5-s + 0.816·6-s − 1.06·8-s + 9-s + 1.58·10-s − 0.577·12-s + 2.58·15-s − 1/4·16-s − 0.727·17-s + 0.707·18-s − 0.229·19-s − 1.11·20-s − 1.22·24-s + 11/5·25-s + 0.769·27-s + 1.82·30-s + 1.25·31-s + 0.883·32-s − 0.514·34-s − 1/2·36-s − 0.162·38-s − 2.37·40-s + 2.23·45-s − 0.288·48-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 987696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.040501053 |
L(21) |
≈ |
6.040501053 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C1 | (1−T)2 |
| 19 | C1 | 1+T |
good | 5 | C2×C2 | (1−4T+pT2)(1−T+pT2) |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C2×C2 | (1+pT2)(1+3T+pT2) |
| 23 | C22 | 1−24T2+p2T4 |
| 29 | C22 | 1+27T2+p2T4 |
| 31 | C2×C2 | (1−8T+pT2)(1+T+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C22 | 1−3T2+p2T4 |
| 43 | C22 | 1+25T2+p2T4 |
| 47 | C22 | 1−68T2+p2T4 |
| 53 | C22 | 1+79T2+p2T4 |
| 59 | C2×C2 | (1−9T+pT2)(1−3T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1+5T+pT2) |
| 67 | C2×C2 | (1−2T+pT2)(1+T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1+3T+pT2) |
| 73 | C2×C2 | (1−13T+pT2)(1+11T+pT2) |
| 79 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 83 | C22 | 1−72T2+p2T4 |
| 89 | C22 | 1+165T2+p2T4 |
| 97 | C22 | 1+58T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.301276033902248886072544324981, −7.83767424717188548791787990887, −7.08539267885969964936271339550, −6.63184230370292439861888314224, −6.33789817811069174496896442851, −5.83086745494965605328944737782, −5.47317821006990102026865378357, −4.85591809358781683871283314618, −4.59548332478518888234100145371, −3.90451504588036497167163213578, −3.39968332980185008642977401955, −2.75886969069619919972935688817, −2.27508195481470203047502626025, −1.94786254432634666588022972622, −0.987798022315836519928665919699,
0.987798022315836519928665919699, 1.94786254432634666588022972622, 2.27508195481470203047502626025, 2.75886969069619919972935688817, 3.39968332980185008642977401955, 3.90451504588036497167163213578, 4.59548332478518888234100145371, 4.85591809358781683871283314618, 5.47317821006990102026865378357, 5.83086745494965605328944737782, 6.33789817811069174496896442851, 6.63184230370292439861888314224, 7.08539267885969964936271339550, 7.83767424717188548791787990887, 8.301276033902248886072544324981